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SNARK Aggregation
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CRS

Trusted Setup
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Aggregation 
from existing CRS
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Application: Filecoin



Proof of storage
ProveCommit

ProveCommit

ProveCommit

Block n

Block n+1

Proves 32GB submit on chain

Proof



Problem: a block is finite

ProveCommit
(10 SNARKs)

ProveCommit
(10 SNARKs)

ProveCommit
(10 SNARKs)

Block n

Block n+1

Proves 32GB submit on chain

ProveCommit
(10 SNARKs)

Block is full !

Proof

Currently hovering around 10 millions SNARK per day !!



Problem (2) : time/gas is finite

Block n

ProveCommit Valid proof

Verification time

ProveCommit Out of time

(10ms)

ProveCommit Valid proof (10ms)

ProveCommit Valid proof (10ms)



Solution (1) : Batch verification

Operations can efficiently be batched for faster verification

Block n Valid proofS (20ms)

Verification time

ProveCommit

ProveCommit

ProveCommit

ProveCommit



Solution (2) : Aggregation

● Size is logarithmic as well as verification time
● Allows for thousands time more proofs on chain

ProveCommit

ProveCommit

ProveCommit

ProveCommit

Aggregated Proof

Block n

Block n+1
Aggregated Proof

Aggregated Proof



Aggregated proof verification

Block n

Valid proofS

Verification time

(20ms)

Valid proofS (20ms)Aggregated Proof 
(~2000 SNARKS)

Valid proofS (20ms)

In practice, we start to go up to x200 more ProveCommits 
onchain (~x2000 SNARks)

Aggregated Proof 
(~2000 SNARKS)

Aggregated Proof 
(~2000 SNARKS)



Implementation



Library
● Coded in Rust, available at https://github.com/filecoin-project/bellperson branch 

feat-ipp2
● Initial code from the arkworks library https://github.com/arkworks-rs/ripp/ 
● Ported & optimized in the bellman framework (bellperson fork) 
● Using BLS12-381 curves from the blst library https://github.com/supranational/blst 
● SRS combined from Filecoin & Zcash power of taus

○ Code at https://github.com/nikkolasg/taupipp 
○ Up to 2^19

● Benchmark performed on 32c/64t AMD Raizen Threadripper
● Audited by NCC and second audit in progress by Matteo Campanelli

https://github.com/filecoin-project/bellperson
https://github.com/arkworks-rs/ripp/
https://github.com/supranational/blst
https://github.com/nikkolasg/taupipp


Verifier Time
● Verifying aggregate proofs 

becomes faster from 32 
proofs.

● 8192 proofs in 33ms 
○ “ratio” of 0.004 ms per 

proof 
● Including unserialization 
● Relies heavily on parallelism



Proof size
● Use compression of G_T points

○ Based on Taurus 
compression

○ From RELIC library 
implementation

○ 10log(n) + 5 G_T in proofs

● Turnover at 128 proofs
○ 23kB for aggregated
○ 24kB for “all proofs”

* 



Aggregation Time
● 8.7s for 8192 proofs
● Relies heavily on 

parallelism

● 2^17 proofs in ~2mn
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Thanks!
Any questions?

eprint.iacr.org/2021/529
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● Presentation template by SlidesCarnival
● Illustrations by Iconfinder

45

http://www.slidescarnival.com/
http://www.iconfinder.com

