SNARKPack Practical Groth16 Aggregation

Joint work with Mary Maller Anca Nitulescu Nicolas Gailly Protocol Labs

SNARKPack

SNARK Batching

Verification

 $e(A_1, B_1) = e(C_1, D)$ $e(A_2, B_2) = e(C_2, D)$

$$e(A_n, B_n) = e(C_n, D)$$

SNARK Aggregation

Batch Verification

$$\prod e(\mathsf{A}_{i}, \mathsf{B}_{i})^{\mathbf{r}^{i}} = \prod e(\mathsf{C}_{i}, \mathsf{D})^{\mathbf{r}^{i}}$$

$$\prod e(\mathsf{A}_{i}, \mathsf{B}_{i}^{\mathbf{r}^{i}}) = e(\prod \mathsf{C}_{i}^{\mathbf{r}^{i}}, \mathsf{D})$$

$$\begin{cases} \langle g \rangle = \mathbb{G}, \langle \tilde{g} \rangle = \tilde{\mathbb{G}} \\ e : \mathbb{G} \times \mathbb{G} \to \tilde{\mathbb{G}} \\ e(g^a, g^b) = \tilde{g}^{ab} \end{cases}$$

SNARK Aggregation

Batch Verification

$$\prod e(\mathsf{A}_{i}, \mathsf{B}_{i})^{\mathbf{r}^{i}} = \prod e(\mathsf{C}_{i}, \mathsf{D})^{\mathbf{r}^{i}}$$

Aggregation

$$\prod e(\mathsf{A}_{i}, \mathsf{B}_{i}^{\mathbf{r}^{i}}) = e(\prod \mathsf{C}_{i}^{\mathbf{r}^{i}}, \mathsf{D})$$

Construction

$$\langle \mathbf{A}, \mathbf{b} \rangle = \prod A_i^{b_i}$$

 $\mathsf{A}_{\mathsf{i}},\mathsf{B}_{\mathsf{i}}\in\mathbb{G}, \mathsf{b}_{\mathsf{i}}\in\mathbb{Z}_{q}$

 $\langle \mathbf{A}, \mathbf{B} \rangle = \prod e(\mathbf{A}_i, \mathbf{B}_i)$

$$\langle \mathbf{A}, \mathbf{b} \rangle = \prod A_i^{\mathbf{b}_i}$$
$$\langle \mathbf{A}, \mathbf{B} \rangle = \prod e(\mathbf{A}_i, \mathbf{B}_i)$$
$$\begin{aligned} \mathbf{Z}_{\mathbf{A}\mathbf{B}} = \prod e(\mathbf{A}_i, \mathbf{B}_i^{\mathbf{r}}) \\ \mathbf{Z}_{\mathbf{A}\mathbf{B}} = \prod e(\mathbf{A}_i, \mathbf{B}_i^{\mathbf{r}}) \\ \mathbf{A}_{\mathbf{B}} = \prod e(\mathbf{A}_i, \mathbf{B}_i^{\mathbf{r}}) \\ \mathbf{A}_{\mathbf{B}} = \mathbf{A}_{\mathbf{A}\mathbf{B}} = \mathbf{A}_{\mathbf{A}\mathbf{B}\mathbf{B} = \mathbf{A}_{\mathbf{A}\mathbf{B} = \mathbf{A}_{\mathbf{A}\mathbf{B}} =$$

$$\langle \mathbf{A}, \mathbf{b} \rangle = \prod A_i^{\mathbf{b}_i}$$
$$\langle \mathbf{A}, \mathbf{B} \rangle = \prod e(\mathbf{A}_i, \mathbf{B}_i)$$
$$Z_{\mathbf{A}\mathbf{B}} = \langle \mathbf{A}, \mathbf{B}^r \rangle$$
Aggregation

$$\langle \mathbf{C}, \mathbf{r} \rangle = \prod \mathbf{C}_{i}^{r_{i}}$$

$$\langle \mathbf{A}, \mathbf{B}^{\mathbf{r}} \rangle = \prod e(\mathbf{A}_{i}, \mathbf{B}_{i}^{r_{i}})$$

$$Z_{\mathbf{A}\mathbf{B}} = \langle \mathbf{A}, \mathbf{B}^{\mathbf{r}} \rangle$$

$$Z_{\mathbf{A}\mathbf{B}} = \langle \mathbf{A}, \mathbf{B}^{\mathbf{r}} \rangle$$
Aggregation

Filecoin: Powers of Tau

Zcash: Powers of Tau

SNARK Aggregation

Aggregation

Application: Filecoin

.....

Currently hovering around 10 millions SNARK per day !!

Solution (1) : Batch verification

Operations can efficiently be batched for faster verification

Solution (2) : Aggregation

- Size is logarithmic as well as verification time
- Allows for thousands time more proofs on chain

Aggregated proof verification

onchain (~x2000 SNARks)

Implementation

Library

- Coded in **Rust,** available at <u>https://github.com/filecoin-project/bellperson</u> branch feat-ipp2
- Initial code from the arkworks library https://github.com/arkworks-rs/ripp/
- Ported & optimized in the **bellman** framework (bellperson fork)
- Using **BLS12-381 curves** from the **blst library** <u>https://github.com/supranational/blst</u>
- SRS combined from Filecoin & Zcash power of taus
 - Code at https://github.com/nikkolasg/taupipp
 - Up to 2^19
- Benchmark performed on 32c/64t AMD Raizen Threadripper
- Audited by NCC and second audit in progress by Matteo Campanelli

\$

Verifier Time

- Verifying aggregate proofs becomes **faster** from **32 proofs**.
- 8192 proofs in 33ms
 - "ratio" of 0.004 ms per proof
- Including unserialization
- Relies heavily on parallelism

- Use **compression** of G_T points
 - Based on Taurus compression
 - From RELIC library implementation
 - $10\log(n) + 5 G_T in proofs$
- Turnover at 128 proofs
 - 23kB for aggregated
 - 24kB for "all proofs"

Thanks

Any questions?

eprint.iacr.org/2021/529

Credits

Special thanks to all those who made and released these resources for free:

- Presentation template by <u>SlidesCarnival</u>
- Illustrations by <u>Iconfinder</u>