
SNARKPack
Practical Groth16 Aggregation

Anca Nitulescu
Nicolas Gailly
Protocol Labs

Joint work with
Mary Maller

2

In Brief

SNARKs

3

In Brief

SNARKPack

SNARKs

4

SNARKPack

In Brief

log n

SNARKs

Groth16

5

QAP
crs

SNARK
A =

π B C

e(A, B) = e(C , D)

s s2 sd

6

Many SNARKs

ππππ
BiAi =

Ci

Verification (D = gd)Proofs

e(Ai, Bi) = e(Ci , D)

i=1,n

7

Verification (D = gd)

ππππ
BiAi =

Ci

Proofs

i=1,n

e(A1, B1) = e(C1 , D)

e(A2, B2) = e(C2 , D)

e(An, Bn) = e(Cn , D)

…

Many SNARKs

8

e(A1, B1) = e(C1 , D)

e(A2, B2) = e(C2 , D)

e(An, Bn) = e(Cn , D)

…

SNARK Batching
Verification

9

e(A1, B1) = e(C1 , D)

e(A2, B2) = e(C2 , D)

e(An, Bn) = e(Cn , D)

…

SNARK Batching

r ←$

e(A1, B1) = e(C1 , D)

e(A2, B2) = e(C2 , D)

e(An, Bn) = e(Cn , D)

…

r ྾

r2 ྾

rn ྾

Verification

10

e(A1, B1) = e(C1 , D)

e(A2, B2) = e(C2 , D)

e(An, Bn) = e(Cn , D)

…

SNARK Batching

r ←$

Verification

∏

e(Ai, Bi)r = ∏e(Ci, D)r

i i

Batch Verification

11

e(A1, B1) = e(C1 , D)

e(A2, B2) = e(C2 , D)

e(An, Bn) = e(Cn , D)

…

SNARK Batching

r ←$

Verification

∏

e(Ai, Bi)r = ∏e(Ci, D)r

i i

Batch Verification

12

SNARK Aggregation

∏

e(Ai, Bi)r = ∏e(Ci, D)r

i i

Batch Verification

∏

e(Ai, Bir) = e(∏Ci

r , D)

⇔

i i

13

SNARK Aggregation
Aggregation

BiAi Ci∏

e(Ai, Bi)r = ∏e(Ci, D)r

i i

Batch Verification

⇔

∏

e(Ai, Bir) = e(∏Ci

r , D)
i i

ZAB=∏

e(Ai , Bir)

14

SNARK Aggregation
Aggregation

BiAi Ci∏

e(Ai, Bi)r = ∏e(Ci, D)r

i i

Batch Verification

⇔

ZC=∏Ci
r i

∏

e(Ai, Bir) = e(∏Ci

r , D)
i i

i

ZAB=∏

e(Ai , Bir)

15

SNARK Aggregation
Aggregation

BiAi Ci∏

e(Ai, Bi)r = ∏e(Ci, D)r

i i

Batch Verification

⇔

ZC=∏Ci
r i

i

ZAB = e(ZC, D)

16

SNARK Aggregation
Aggregation

BiAi Ci∏

e(Ai, Bi)r = ∏e(Ci, D)r

i i

Batch Verification

ZC=∏Ci
r

ZAB=∏

e(Ai , Bir)

i

i

ZAB = e(ZC, D)

⇔

17

Construction

18

〈A, B〉= ∏

e(Ai , Bi)

 Ai, Bi∊ , bi∊

Tools: MIPP & TIPP
Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely

〈A, b〉= ∏ Ai
bi

19

Tools: MIPP & TIPP

ZC=∏Ci
r

ZAB=∏

e(Ai , Bir)

i

i〈A, B〉= ∏

e(Ai , Bi)

〈A, b〉= ∏ Ai
bi

Aggregation

Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely

20

Tools: MIPP & TIPP

〈A, B〉= ∏

e(Ai , Bi)

〈A, b〉= ∏ Ai
bi

Aggregation

Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely

ZAB=〈A, Br〉

ZC= 〈C, r〉

21

Tools: MIPP & TIPP

〈A, Br〉= ∏

e(Ai , Bi

ri)

〈C, r〉= ∏ Ci
ri

Aggregation

ZAB=〈A, Br〉

Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely

ZC= 〈C, r〉

22

Tools: MIPP & TIPP
Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely

Com(A) Com(B)

Com(C)

〈A, Br〉= ∏

e(Ai , Bi

ri)

〈C, r〉= ∏ Ci
ri

23

Tools: MIPP & TIPP
Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely

Com(A) Com(B)

Com(C)

〈A, Br〉= ∏

e(Ai , Bi

ri)

〈C, r〉= ∏ Ci
ri

24

CRS

Trusted Setup

25

Aggregation
from existing CRS

SNARK Aggregation

g α2 αd g g

h α2 αd h h
 α

 α β2 βd g g

 β2 βd h
 β

 β

h

g

h

Filecoin: Powers of Tau Zcash: Powers of Tau

Aggregation

BiAi Ci

i=1,n

SNARK Aggregation

Aggregation

BiAi Ci

Com(A, B) Com(C)

i=1,n

SNARK Aggregation

Aggregation

BiAi Ci

MIPP:〈C,r〉= ∏ Ci
ri

TIPP: 〈A, Br〉= ∏

e(Ai , Bi

ri)

i=1,n

SNARK Aggregation

log n

Com(A, B) Com(C)

Aggregation

BiAi Ci

ZAB=〈A, Br〉TIPP: 〈A, Br〉= ∏

e(Ai , Bi

ri)

i=1,n

SNARK Aggregation

log n

MIPP:〈C,r〉= ∏ Ci
ri ZC= 〈C, r〉

Com(A, B) Com(C)

Aggregation

BiAi Ci

i=1,n

SNARK Aggregation
Verification

log n

ZAB = e(ZC, D)

MIPP + TIPP

ZAB=〈A, Br〉

ZC= 〈C, r〉

Application: Filecoin

Proof of storage
ProveCommit

ProveCommit

ProveCommit

Block n

Block n+1

Proves 32GB submit on chain

Proof

Problem: a block is finite

ProveCommit
(10 SNARKs)

ProveCommit
(10 SNARKs)

ProveCommit
(10 SNARKs)

Block n

Block n+1

Proves 32GB submit on chain

ProveCommit
(10 SNARKs)

Block is full !

Proof

Currently hovering around 10 millions SNARK per day !!

Problem (2) : time/gas is finite

Block n

ProveCommit Valid proof

Verification time

ProveCommit Out of time

(10ms)

ProveCommit Valid proof (10ms)

ProveCommit Valid proof (10ms)

Solution (1) : Batch verification

Operations can efficiently be batched for faster verification

Block n Valid proofS (20ms)

Verification time

ProveCommit

ProveCommit

ProveCommit

ProveCommit

Solution (2) : Aggregation

● Size is logarithmic as well as verification time
● Allows for thousands time more proofs on chain

ProveCommit

ProveCommit

ProveCommit

ProveCommit

Aggregated Proof

Block n

Block n+1
Aggregated Proof

Aggregated Proof

Aggregated proof verification

Block n

Valid proofS

Verification time

(20ms)

Valid proofS (20ms)Aggregated Proof
(~2000 SNARKS)

Valid proofS (20ms)

In practice, we start to go up to x200 more ProveCommits
onchain (~x2000 SNARks)

Aggregated Proof
(~2000 SNARKS)

Aggregated Proof
(~2000 SNARKS)

Implementation

Library
● Coded in Rust, available at https://github.com/filecoin-project/bellperson branch

feat-ipp2
● Initial code from the arkworks library https://github.com/arkworks-rs/ripp/
● Ported & optimized in the bellman framework (bellperson fork)
● Using BLS12-381 curves from the blst library https://github.com/supranational/blst
● SRS combined from Filecoin & Zcash power of taus

○ Code at https://github.com/nikkolasg/taupipp
○ Up to 2^19

● Benchmark performed on 32c/64t AMD Raizen Threadripper
● Audited by NCC and second audit in progress by Matteo Campanelli

https://github.com/filecoin-project/bellperson
https://github.com/arkworks-rs/ripp/
https://github.com/supranational/blst
https://github.com/nikkolasg/taupipp

Verifier Time
● Verifying aggregate proofs

becomes faster from 32
proofs.

● 8192 proofs in 33ms
○ “ratio” of 0.004 ms per

proof
● Including unserialization
● Relies heavily on parallelism

Proof size
● Use compression of G_T points

○ Based on Taurus
compression

○ From RELIC library
implementation

○ 10log(n) + 5 G_T in proofs

● Turnover at 128 proofs
○ 23kB for aggregated
○ 24kB for “all proofs”

*

Aggregation Time
● 8.7s for 8192 proofs
● Relies heavily on

parallelism

● 2^17 proofs in ~2mn

44

Thanks!
Any questions?

eprint.iacr.org/2021/529

Credits

Special thanks to all those who made and
released these resources for free:
● Presentation template by SlidesCarnival
● Illustrations by Iconfinder

45

http://www.slidescarnival.com/
http://www.iconfinder.com

