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Abstract

Zero-knowledge proofs allow a prover to convince a verifier of the veracity of
a statement without revealing any other information. An interesting class of zero-
knowledge protocols are those following the MPC-in-the-head paradigm (Ishai et
al., STOC ’07 ) which use secure multiparty computation (MPC) protocols as basis.
Efficient instances of this paradigm has emerged as an active research topic in the
last years, starting with ZKBoo (Giacomelli et al., USENIX ’16 ). Zero-knowledge
protocols are a vital building block in the design of privacy-preserving technologies
as well as cryptographic primitives like digital signature schemes that provide post-
quantum security.

This work investigates the security of zero-knowledge protocols following the
MPC-in-the-head paradigm. We provide the first machine-checked security proof of
such a protocol on the example of ZKBoo. Our proofs are checked in the EasyCrypt
proof assistant. To enable a modular security proof, we develop a new security
notion for the MPC protocols used in MPC-in-the-head zero-knowledge protocols.
This allows us to recast existing security proofs in a black-box fashion which we
believe to be of independent interest.

1 Introduction

Zero-knowledge proofs [1] allow a party, the prover, to convince another party, acting
as the verifier, of the veracity of some statement without revealing anything else. This
seemingly paradoxical primitive lies at the heart of many modern privacy-preserving
technologies, and more generally is a crucial cryptographic building block for applications
like digital signature schemes.

One approach to constructing zero-knowledge proofs has gained particular attention
over the last years: the MPC-in-the-head paradigm of Ishai et al. [2] which uses secure
multiparty computation (MPC) protocols in a surprising way as building block. Consider
the setting where a prover holds the pre-image x of a public one-way function f and has
published y = f(x). To convince the verifier that they indeed know x corresponding to y,
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the prover will first split the secret x into random shares x1, . . . , xn such that
∑

i xi = x.
The prover then emulates an MPC protocol ”in their head”, with the catch that the
protocol performs a distributed computation of f(x) with shares x1, . . . xn as inputs.
This emulation yields one transcripts of the protocol execution per party. Prover and
verifier can then interact to reveal a subset of transcripts, which the prover can check
for consistency. If the consistency check succeeds, then the verifier will be convinced
that the prover knows x. Intuitively, this does not leak any information about x if the
MPC protocol is secure against insider corruption of some parties and not too many
transcripts are revealed.

While at first believed to be of purely theoretical interest, the MPC-in-the-head
paradigm was subsequently shown to be of practical relevance [3]. Combined with the
Fiat-Shamir heuristic [4], one can moreover obtain efficient digital signature schemes
from such zero-knowledge proofs. In fact, Picnic, a successful contender for the NIST
post-quantum cryptography standardization competition [5], follows this design pattern.
Moreover, multiple efficiency improvements have been proposed recently [6, 7]. Given
the standardization potential of this approach, it is natural to ask to formally verify such
constructions.

1.1 Our Contributions

In this work, we investigate the security of MPC-in-the-head type zero-knowledge proofs
like ZKBoo [3], Picnic [5, 8], KKW [9], and Banquet [7].

• We provide the first machine-checked security proof of a zero-knowledge protocol
following the MPC-in-the-head paradigm. Our mechanization studies the ZKBoo
protocol [3] and is done in the EasyCrypt proof assistant [10]. Interestingly, proto-
cols following the MPC-in-the-head paradigm use MPC protocols as building block
in a bigger construction rather than as goal, and we are not aware of any other
machine-checked proof with this property.

• To enable a modular security proof, we develop a new security notion for the MPC
protocols in question which is of independent interest. The new notion enables us
to give black-box security proofs of MPC-in-the-head zero-knowledge protocols.

Our starting point is the ZKBoo protocol by Giacomelli et al. [3] as a representa-
tive of this protocol class. From a technical perspective, this class of protocols is an
interesting challenge due to the unconventional combination of complex primitives like
MPC and zero-knowledge proofs. Based on the observation that modularity of existing
constructions currently does not carry over to modularity of proofs, we propose to use
a refined notion of the MPC protocol (called decomposition protocol, to keep with the
ZKBoo terminology). This new decomposition notion then allows us to define black-box
transformations from decomposition to Σ-protocols, a special class of zero-knowledge
protocol. To demonstrate the generality of this approach, we recast existing protocols
in this style. On a conceptual level, this clear separation between decomposition and
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transformation to Σ-protocol improves the understanding of the different optimization
strategies, and can hopefully help find new ones. With a clear proof strategy set up, we
then proceed to mechanize the security proof in EasyCrypt. The EasyCrypt code is in
the attached zip-file.

1.2 Outline

Section 2 presents the necessary background for the rest of this work. The MPC-in-the-
head paradigm is presented in Section 3, and we discuss moreover the ZKBoo protocol
and its existing security proof as an example. In Sections 4 and 5 we present our new
decomposition notion and demonstrate the black-box construction of a Σ-protocol from
it. Further protocols and how they fit into our formalization are discussed in Section 6.
Section 7 presents our EasyCrypt formalization of the ZKBoo protocol. Related work is
discussed in Section 8 before we discuss future work and conclude in Section 9 and 10.

2 Preliminaries

This section presents some cryptographic concepts that are necessary to understand the
rest of this work.

2.1 Commitments

A commitment scheme is a cryptographic primitive that allows a committer holding
message m to convince a verifier of the following. Firstly, that some m was fixed at some
point in time without revealing the value of m. This is done by sending a commitment,
i.e. some token derived from m, to the verifier. Second, the committer can later open the
commitment to reveal m and convince the verifier that the message was not modified in
the meantime.

Definition 2.1 (Commitment scheme). A commitment scheme consists of a tuple (setup, com, cverify)
of probabilistic algorithms with the following properties:

• Correctness: Let ck ← setup(1κ). For all m and (c, r)← com(ck,m), cverify(m, c, r) =
>.

• Perfect hiding: Let ck ← setup(1κ). For all m,m′, with m 6= m′, the distributions
com(ck,m) and com(ck,m′) are identical.

• Computational binding: Let ck ← setup(1κ), and c a commitment. Then for any
adversary and message m, the probability of finding r, r′ such that cverify(m, c, r) =
cverify(m, c, r′) = > is negligible.

Note that we limit ourselves to the above definition of perfectly hiding and computa-
tionally binding commitments. There are other notions that will not be discussed here.
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2.2 MPC

A secure multiparty computation (MPC) protocol allows a set of n mutually distrusting
parties P1, . . . , Pn to compute a public function f of their private inputs x1, . . . , xn. The
function f is typically assumed to be represented as an arithmetic circuit for the sake
of the protocol. Security can be studied with respect to different corruption models.
In this work, we focus on passive security (also called honest-but-curious) where all
protocol participants are assumed to follow the protocol specification, but might try
to derive additional information from the messages they receive. An MPC protocol is
deemed passively secure if it provides

• Correctness: Parties learn the correct output f(x1, . . . , xn), and

• Privacy: Parties do not learn anything about the inputs of honest parties beyond
what f(x1, . . . , xn) reveals.

We will denote by view the transcript of a protocol execution from the point of view
of a party Pi, consisting of the input xi, all messages Pi receives, as well as its random
choices.

2.3 Zero-knowledge protocols

Zero-knowledge protocols [1] are a cryptographic primitive that allows a prover P to
convince a verifier V of the veracity of a public statement, without revealing anything
beyond that fact.

2.3.1 Σ-protocols

An important subclass of zero-knowledge protocols are Σ-protocols [11]. A Σ-protocol
is a zero-knowledge proof of knowledge for a relation R, i.e. it allows a prover to prove
knowledge of a witness x for a public statement h in relation R.

Definition 2.2 (Σ-protocol). Let R be a relation. A Σ-protocol for R is an interactive
protocol between a prover P and a verifier V , where P and V hold a common input h
and P has additional secret input x with R(h, x), with the following properties:

• The protocol has a special 3-move form (a, e, z) as shown in Fig 1.

• Completeness: If prover P is honest, i.e. R(h, x) and P follows the protocol, then
an honest verifier V will always accept.

• s-special soundness: Given s transcripts (a, e1, z1), . . . , (a, es, zs), an x′ with R(h, x′)
can be extracted from the transcripts.

• Special honest-verifier zero-knowledge: Assuming that the verifier is honest, there
exists a simulator S that simulates transcripts such that real and simulated tran-
scripts are statistically indistinguishable.
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Prover(h, x) Verifier(h)

a← scommit(h, x)
a−−−−→

e← schallenge()
e←−−−−

z ← sresponse(h, x, a, e)
z−−−−→ sverify(h, a, e, z)

Figure 1: Σ-Protocol overview

Interactive Σ-protocols can be made non-interactive and turned into digital signature
schemes via the Fiat-Shamir transform [4]. The idea is to replace the random challenge
by the verifier by the output of a hash function on input the statement to be proved
as well as the first protocol message, which ensures that the prover chooses the first
message before seeing the challenge. This transformation from proof of knowledge to
signature was proven secure in the random oracle model by Pointcheval and Stern [12].

3 The MPC-in-the-head paradigm

Since the invention of the zero-knowledge concept, many approaches to constructing
protocols were proposed. In recent years, the MPC-in-the-head paradigm (Ishai et al. [2])
has gained popularity. In this section, we briefly revisit the MPC-in-the-head paradigm
as well as the ZKBoo protocol.

3.1 MPC-in-the-head-based zero-knowledge

To obtain a zero-knowledge protocol from an MPC protocol, the MPC-in-the-head
paradigm proposes the following idea. Assume there is a public function φ and value y,
and we want to prove knowledge of a witness x such that φ(x) = y in zero knowledge.
The value y could for example be the output of the SHA-256 hash function φ. As is
standard in the MPC literature, we assume that φ is given in the form of a circuit.

• The prover P starts by secret sharing the private input x into inputs x1, . . . , xn to
virtual parties P1, . . . , Pn. Assume that the circuit representation of φ is chosen
such that it evaluates the function on such a shared input. The prover then runs
an MPC protocol for evaluating φ on those shares ”in their head”. As a result,
P obtains one protocol transcript for each party, also referred to as views. The
prover then commits to all views and sends the commitments to the verifier V .

• The prover and verifier engage in an interactive protocol to select and open a
random subset of committed views.

• The prover opens those commitments to reveal the requested views.
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• The verifier checks consistency of the opened views and accepts if they are consis-
tent as well as valid openings of the commitments, and otherwise rejects.

The crucial observation is that if the MPC protocol allows for local verifiability of
views, then the above idea yields zero-knowledge protocols. While the MPC-in-the-
head paradigm was initially believed to be of mostly theoretical interest, a series of
recent works, starting with ZKBoo [3], showed it to be of practical relevance.

3.2 ZKBoo

We will now study the ZKBoo protocol as a concrete instance of the MPC-in-the-head
paradigm. The ZKBoo protocol [3] was the first construction to show that the MPC-
in-the-head paradigm [2] could actually be instantiated to yield a practically efficient
protocol. The idea is to use a secret-sharing-based MPC protocol with three parties and
a particular communication pattern as basis: Each party Pi only sends messages to one
of the other parties, namely their neighbor Pi−1. This pattern ensures that meaningful
consistency checks can be performed given a pair of views of a protocol execution. The
protocol operates on arithmetic circuits over a finite field Zp.

3.2.1 The Construction

For convenience, and to separate the MPC protocol from the Σ-protocol construction, the
authors define (2,3)-decomposition. This is the view generation for an MPC protocol with
three parties and privacy against passive corruption of two parties. This decomposition
can then be combined with any commitment scheme to obtain a Σ-protocol for proving
knowledge of a pre-image of a value y under a function φ.

(2,3)-Decomposition Let φ be a function which is represented as circuit with N
gates. A (2,3)-decomposition for φ is defined as follows:

Definition 3.1 ( [3]). A (2,3)-decomposition for a function φ is the set of functions

D = {Share,Rec, φ
(1)
1 , . . . , φ

(N+1)
1 , . . . , φ

(1)
3 , . . . , φ

(N+1)
3 ,Output1, Output2,Output3} such

that Share is a surjective function and φ
(i)
m , Outputi and Rec are functions as described

before. Let Π∗φ be the algorithm in Fig. 2, then we say that D

• (Correctness) is correct if Pr[φ(x) = Π∗φ] = 1 for all x ∈ X. The probability is
computed over the choice of the random tapes ki.

• (Privacy) has 2-privacy if it is correct and for all e ∈ [3] there exists a PPT sim-
ulator Se such that ({ki,wi}i∈{e,e+1},ye+2

) and Se(φ,y) have the same probability
distribution for all x ∈ X.

The decomposition functions are implemented by ZKBoo as:

• Share(x; k1,k2,k3) performs an additive secret sharing of x into three random
shares x1, x2, x3 such that x = x1 + x2 + x3.
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Protocol Π∗φ

Let φ : X → Y be a function and D a related (2,3)-decomposition as defined in Def. 3.1.
Input: x ∈ X

1. Sample random tapes k1, k2, k3.

2. Compute (x1,x2,x3)← Share(x; k1,k2,k3).

3. Let w1, w2, w3 be vectors with N + 1 entries. Initialize wi[0] = xi for all i ∈
{1, 2, 3}. For j = 1, . . . , N compute:

• For i ∈ {1, 2, 3} compute:

wi[j] = φ
(j)
i ((wm[0..j − 1],km)m∈{i,i+1}).

4. Compute yi = Output(wi,ki) for i ∈ {1, 2, 3}.

5. Compute y = Rec(y1,y2,y3).

Output: y ∈ Y

Figure 2: Protocol Π∗φ describing how to use decomposition, used in Def. 3.1. Repro-
duced from [3].

• Rec(y1,y2,y3) outputs y = y1 + y2 + y3.

• The gate evaluation functions φ
(j)
i are defined in the following way. Consider the

j-th gate, and let a and b be its left and right input gates, resp. Then for i ∈ [3],

φ
(j)
i is defined as:

– unary addition of α:

wi[j] = φ
(j)
i (wi[a]) =

{
wi[a] + α if i = 1

wi[a] otherwise

– unary multiplication by α:

wi[j] = φ
(j)
i (wi[a]) = α ·wi[a]

– binary addition:

wi[j] = φ
(j)
i (wi[a],wi[b]) = (wi[a] + wi[b])

– binary multiplication:

wi[j] =φ
(j)
i (wi[a, b],wi+1[a, b])

=wi[a] ·wi[b] + wi+1[a] ·wi[b]

+ wi[a] + wi+1[b] +Ri(j)−Ri+1(j)

where Ri(j) is sampled uniformly at random using ki.

• Outputi(wi,ki) selects the shares of the output wires of the circuit.
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ZKBoo protocol

The verifier and the prover have input y ∈ Lφ. The prover knows x such that y = φ(x).
A (2,3) decomposition of φ is given. Let Π∗φ be the protocol related to this decomposition.

Commit: The prover does the following:

1. Sample random tapes k1, k2, k3.

2. Run Π∗φ and obtain the views w1, w2, w3 and the output shares y1, y2, y3.

3. Commit to ci = com(ki,wi) for all i ∈ [3].

4. Send a = (y1,y2,y3, c1, c2, c3).

Prove: The verifier chooses an index e ∈ [3] and sends it to the prover. The prover
answers to the verifier’s challenge sending opening ce, ce+1 thus revealing z =
(ke,we,ke+1,ke+1).

Verify: The verifier runs the following checks:

1. If the openings of commitments ce, ce+1 do not verify, output reject.

2. If Rec(y1,y2,y3) 6= y, output reject.

3. If ∃i ∈ {e, e+ 1} such that yi 6= Outputi(wi), output reject.

4. If ∃j such that we[j] 6= φ
(j)
e (we,we+1,ke,we+1), output reject.

5. Otherwise output accept.

Figure 3: ZKBoo protocol, reproduced from [3].

8



ZKBoo protocol Given the (2,3)-decomposition described above and a commitment
scheme, the ZKBoo protocol proceeds to construct a Σ-protocol as shown in Fig. 3,
following the MPC-in-the-head paradigm. The protocol is shown to be a Σ-protocol
assuming the security of the commitment scheme and the (2,3)-decomposition.

3.2.2 Black-Box Security

We will now revisit the security proof of the ZKBoo construction. The proof of [3, Prop.
4.2] is not black-box as it relies on implementation specifics rather than on the security
guarantees given by the decomposition and the commitment scheme.

Revisiting the ZKBoo security proof To prove that the ZKBoo construction is a
Σ-protocol, it is necessary to prove three properties: Completeness, 3-special soundness
and special honest-verifier zero-knowledge.

The completeness property is derived from the correctness of the commitment scheme
in combination with correctness of the decomposition. There is, however, a subtle issue
that prevents this proof step from being fully black-box: Correctness of the decomposi-
tion itself does not guarantee anything about the verifier’s ability to verify the opened
views. More specifically, correctness is a property of the protocol Π∗φ derived from a
decomposition D that computes all three views, whereas the verifier can only recompute
the view corresponding to challenge e. Hence the security proof needs to revisit the
concrete implementation of verification (recomputing the views in this case) and con-
clude that verification is indeed possible. To be fully precise, one would also need to
reprove that each computation step is performed correctly, as the standard correctness
property in the MPC literature only guarantees correctness of the end result and not
the intermediate computation steps1.

The 3-special soundness property is a modified special soundness property that proves
witness extraction given 3 transcripts (instead of the usual 2). The proof relies on
multiple assumptions: First, the binding property of the commitment scheme is used to
argue that the opened views are identical in the overlapping indices except with negligible
probability. The next step invokes the reconstruction property of the specific secret
sharing scheme used by ZKBoo to extract a potential input. This non-black-box step
is necessary due to the lack of an explicit extractability guarantee of the decomposition
notion. Finally, correctness of the decomposition ensures that the extracted input is
actually valid.

Finally, special honest-verifier zero-knowledge follows directly from 2-privacy of the
decomposition and the hiding property of the commitment scheme, so this part is actually
black-box.

Conclusion As explained above, the ZKBoo security proof is not black-box, which
seems to stem from an incomplete formalization of the required properties of the under-

1Correctness of intermediate steps is of course shown during the proof, but this information is usually
dropped in the final statement as it is not necessary for many applications.
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lying MPC protocol. In the next sections we will make a black-box construction and
proof. To do so we modify the notion of decomposition. This formalization is not limited
to ZKBoo, but captures a range of other protocols, as we will discuss in Section 6

4 Decomposition protocols

Now that we understand why the decomposition notion of Giacomelli et al. [3] is not
sufficient for a black-box security proof of the ZKBoo protocol, we will attempt to
improve the situation. This section proposes a new decomposition notion and explains
how the (2,3)-decomposition of Giacomelli et al. relates to it before we will show a black-
box construction of the ZKBoo protocol from our decomposition notion in Section 5.

4.1 Syntax and Security

Let us first consider the syntax. First of all, we combine the Share and φ
(j)
i functions

into one decompose algorithm since they are no longer used separately. Next, remember
that the black-box proof issues we discussed relate to the extractability of a witness from
views as well as a lack of understanding of verification of the views. To mitigate these
issues, we add a new verify algorithm to the decomposition notion. Finally, we observe
that optimizations of the ZKBoo protocol which we investigate in Section 6 improve in
efficiency by not sending the full views in the last message of the Σ-protocol, but they
perform a reversible compression step. For this reason, we add a compress algorithm to
our formalization. So, the syntax of a decomposition looks as follows:

Definition 4.1 (Decomposition protocols). Let n denote the number of parties. A
decomposition π is a collection of algorithms: (decompose, compress, verify, out, rec)
and distributions C and R. We let ←R R denote uniformly random picking an element
from the distribution. where,

• decompose(φ, x, ks) takes a circuit φ with input x and a collection of random values
and returns n views. We fix the distribution R as the universe of all random value
inputs accepted by decompose.

• compress(v) is a compression function that transforms a view w into an alternative
representation. For convenience, we define a compression function compress(ws, I(e)) :=
(compress(ws[i]))i∈I(e) for a full set of n views and a list of challenged views, pro-
duced by I. We denote the universe of possible challenges e ∈ C.

• uncompress(w) is the inverse of compress.

• verify(φ,ws′, e, ys) takes a circuit, d compressed views, a challenge, and n output
shares and returns true/false,

• out(w[i]) takes a view and returns the output share,

• rec(ys) takes a list of output shares and returns the output value of the circuit.
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After defining the syntax of a decomposition protocol, we now turn to expressing its
security. We identify four properties of interest: verifiability, privacy, special soundness,
and losslessness of compression.

Verifiability The first property, verifiability, captures that the views of a subset of
parties in an honest execution of the protocol can be verified. Note that this property
subsumes and extends correctness of the underlying MPC protocol.

Definition 4.2 (Verifiability). For any fixed φ accepted by the decomposition we say π
is verifiable if for all challenges e ∈ C and inputs x,

Pr[verifiability game(φ, x, e)] = 1

where
verifiability game(φ, x, e) = {

rs←R R;

ws← decompose(c, x, ks);

ys← map out ws;

y ← rec(ys);

ws′ ← uncompress(compress ws e);

valid← verify(c, ws′, ys);

return valid ∧ φ(x) = y

}

(1)

d-Privacy The next property, d-privacy, captures the fact that a subset of views of size
d does not reveal the input to the decomposition protocol. As is common in cryptography,
this privacy property is stated using simulators. Note that the simulator is required
to simulate not the parties’ views obtained from the decompose function, but their
compressed versions. Moreover, the simulator should be able to produce the output
shares for all n parties which are indistinguishable from real output shares.

Definition 4.3 (d-Privacy). A decomposition π is said to be d-private if for all chal-
lenges e ∈ C and accepted circuits φ there exists a PPT simulator Se such that

∀φ, x, e : real(φ, x, e) ∼ Se(φ, c(x)) (2)

where
real(φ, x, e) = {

rs←R R;

ws← decompose(c, x, ks);

ys← map out ws;

return (compress ws e, ys);

}

(3)
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k-Special Soundness Moreover, we require k-special soundness, meaning that given
multiple partial (compressed) protocol views that are consistent with each other and
verify, it is possible to extract a valid input to the protocol. In particular, given any
subset of views of size k, a valid input to the protocol can be extracted.

Definition 4.4 (k-Special Soundness). A decomposition π has k-special soundness if
there exists a PPT extractor witness extractor such that for any k tuples of (ws′1, es1, ys1), . . . , (ws

′
k, esk, ysk)

• If es1, . . . , esk are pairwise different, and

• if the compressed views are pairwise consistent, i.e. ∀i, i′, j, i 6= i′ : j ∈ I(esi) ∩
I(esi′) =⇒ ws′i[j] = ws′i′ [j]. (in particular ys1 = · · · = ysk).

• if each set of compressed views verifies, i.e. ∀i, verify(φ,ws′i, esi, ysi) = true,

• then Pr[φ(witness extractor(c, {ws′i, esi}∀i) = rec(map out(ys1)] = 1.

Losslessness of compression Finally, we require the compression function to be
lossless and hence completely reversible.

Definition 4.5 (Lossless Compression). Let compress be a compression function with
domain D. Compress is lossless if there exists an efficiently computable function uncompress

such that for all x ∈ D, uncompress(compress(x)) = x.

Decomposition Security Combining the properties above, we obtain the following
security definition for decomposition protocols:

Definition 4.6 (Secure decomposition protocol). Let k, d ∈ N. A decomposition pro-
tocol φ is (k, d)-secure if it has verifiability, d-Privacy, k-Special Soundness, and its
decompression is lossless.

4.2 Example: ZKBoo Decomposition Protocol

We now show that our new definition of a secure decomposition captures existing pro-
tocols on the example of ZKBoo. Further examples will be discussed in Section 4. The
construction, recast in our syntax, looks as follows:

• R is the universe of all three element tuples (ks1, ks2, ks3) where ksi is a list of N
random values.

• C = {1, 2, 3}

• out and rec work exactly as before.

• compress selects the appropriate views from a list of views according to the chal-
lenge.
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• decompose is a combination of Share and the gate computation functions φ
(j)
i from

Section 3.2. Concretely, the function corresponds to steps 2 and 3 in Fig. 2.

• verify performs the following checks:

– The views are well-formed.

– The output shares ys[e], y[e + 1] are consistent with the output gate shares
in the corresponding views ws′[e+ 1], ws′[e+ 1]

– For j = 1, . . . , N and i = 1, . . . , 3, φ
(j)
i (ws′[a], ws′[b], ws′[a], ws′[b]) = ws′[e][j].

Here ws′[e][j] denotes the share of gate j in view e.

Lemma 4.7. The construction described above is a secure decomposition for d = 2 and
k = 3.

Proof. To show security, we need to prove verifiability, 3-special soundness, 2-privacy
and losslessness of the compression. Verifiability is an extension of the original correct-
ness proof. We observe that the well-formedness and output share consistency checks
performed by verify are trivially true in an honest execution. The last check performs
the same computations as decompose, just on a subset of views, which is possible given
the communication pattern. 3-special soundness follows from the security of the additive
secret sharing scheme that is used by decompose. The proof of 2-privacy carries over
directly, and finally losslessness is trivial since compress is a projection and does not
modify the individual views.

We conclude that ZKBoo fits our general framework.

5 From Decomposition to Σ-Protocol

In this section, we show an example of a black-box construction of a Σ-protocol from the
decomposition notion presented in Section 4. We focus on one of the simplest construc-
tions based on the Σ-protocol by Giacomelli et al. [3]. As we will discuss in Section 6,
this construction forms the basis for a family of secure transformations. Note that we
actually obtain a stronger result than Giacomelli et al.: Our construction works for any
secure decomposition. Moreover, we add the compress function for view compression to
capture a greater variety of decompositions.

5.1 Example: ZKBoo Σ-Protocol

Let π be a secure decomposition and Com be a secure commitment scheme. The trans-
formation into a Σ-Protocol is shown in Fig. 4. Observe how in comparison to Fig. 3, all
references to the internal structure of the decomposition or even the circuit are removed.

For the sake of completeness, we will briefly outline the security of this protocol.

Lemma 5.1. Let π be a secure (k,d)-decomposition, and Com a secure commitment
scheme. Then the protocol described in Fig. 4 is a secure Σ-protocol.
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Prover(φ, x, y) Verifier(φ, y)

rs←R R
ws← decompose(φ, x, ks)

cs← map com ws
ys← map out ks
a← (cs, ys)

a−−−−→
e←R C

e←−−−−
z ← compress(ws, I(e))

z−−−−→
verify(φ, z, ys)

∧ rec(ys) = y

∧ ∀i ∈ I(e) : com(decompose z[i]) = cs[i]

Figure 4: ZKBoo Σ-protocol construction based on secure decomposition.

Proof. Completeness of the Σ-protocol follows from the correctness of the commitment
correctness, the verifiability of the decomposition, and the losslessness of view compres-
sion. Given the binding property of the commitment scheme, k-special soundness follows
directly from k-special soundness. Special honest-verifier zero-knowledge is a direct con-
sequence of d-privacy in combination with the hiding property of the commitment scheme
which allows to simulate commitments.

6 Further MPC-in-the-Head Protocols

Numerous other implementations of the MPC-in-the-head paradigm for zero-knowledge
exists, in particular as optimizations of ZKBoo. We will briefly discuss in this section
how they fit within our definition of a decomposition and how the corresponding trans-
formation to a Σ-protocol changes. Note that we consider ZKBoo as the base protocol
and explain how the differences of the alternative protocols fit within our framework.

6.1 ZKB++

The first protocol is ZKB++ [13]. It offers numerous optimisation for reducing the size
of the messages communicated in the Σ-Protocol. The underlying MPC protocol is kept
as a three party protocol with 2-Privacy, just like in ZKBoo. Optimisations are then
observed in the work of the compress functions as well as the randomness space. Instead
of sampling a long random string at the beginning, the protocol starts by sampling a
short seed and expanding it into a long pseudo-random one. View compression works as
follows: Given a view, the input share and the random seed used to generate all further
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randomness is projected out. Since all randomness is fixed by the seed it is possible to
recompute all shares of the views given the input share. The remaining algorithms for
computing the decomposition and verification remain unchanged.

6.2 KKW

Another optimisation vector that was explored by Katz, Kolesnikov and Wang [9] is to
replace the traditional MPC protocol by one with preprocessing. This approach splits the
MPC protocol into an input-independent offline phase and an online phase where parties
use their respective inputs. Essentially, correlated randomness [14] is generated during
the offline phase for use in the online phase. The main observation is that since the offline
phase is input-independent, revealing it completely does not compromise input privacy.
Of course such a revealed offline phase cannot be used in an online phase. The work
hence resorts to a trick and uses the repetition of Σ-protocol executions in their favor:
Instead of repeating the protocol execution multiple times to reduce the soundness error
like ZKBoo, KKW directly run m copies of the MPC protocol. The correct execution of
the offline phase is verified via a cut-and-choose approach, i.e. some of the offline phase
instances are completely revealed. For the remaining instances, the online phase can
then be verified following the ZKBoo template, where the verifier requests the opening
of a subset of party views for each instance.

In our terminology, we let R be the universe of all sets of size m of preprocessed
data from the protocol. decompose then executes the online phase for each set of pro-
vided preprocessed data. decompose returns the input of each party, masked under the
preprocessing. The challenge set C is then all tuples of challenges to open a subset of
the preprocessing, and challenges to open all but an individual party from the MPC
protocols. compress selects the subset of runs chosen in the challenge and reveals all
preprocessing. For the remaining runs all preprocessing and views are sent, barring the
view of party p.

Since this protocols requires the prover to execution multiple decomposition proto-
cols with the same secret input, but with different initial randomness the authors added
optimisations not only to the MPC protocol that is used, but also to the Σ-protocol con-
struction. First, all randomness (preprocessing) is committed to, but instead of sending
all commitments to the verifier a hash of all preprocessing concatenated is computed.
Moreover, all messages of the online phase are concatenated and hashed. The hash of
these two hash values are then sent to the verifier. When the prover then responds to
a challenge, compress is used to send the preprocessing and online phase. Additionally,
the commitments to the preprocessing of the unrevealed party is sent. Uncompress is
the identity.

To verify an execution of the Σ-Protocol, the verifier first ensures that the offline
and online phase are executed correctly by calling verify. Next, the verifier commits
to all preprocessing revealed, concatenated it with the commitment of the unrevealed
party (when applicable) and computes the hash. The verifier then runs decompose, and
commits to all messages of the online phase. Lastly, the two hash values and hashed
again and then compared to the value sent by the prover.
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6.3 Picnic

The zero-knowledge protocol underlying the Picnic signature scheme [13] is a combina-
tion of the optimizations described above and hence fits nicely within our approach.

6.4 SNI-in-the-head

Seker et al. [15] showed ZKBoo to be susceptible to probing attacks on the exposed views
of the decomposition. To mitigate this attack, the authors then proposed a change to
the protocol, in particular how multiplication gates are evaluated. It is clear that the
entire extension conforms to our definitions, since only the internal implementation of
the decompose function is changed compared to ZKBoo. Since the attack vector is the
exposed views of the decomposition the Σ-Protocol does not need to change.

6.5 BBQ and Banquet

BBQ [6] and Banquet [7] continue the line of optimizations of ZKB++ and KKW and
adapt their approach to work with the AES blockcipher as function for the relation to be
proved, i.e. the public statement is an AES ciphertext. Using AES is desirable as it is a
well-studied and standardized cipher. BBQ uses an MPC protocol in the preprocessing
model and can thus be expressed similarly to the KKW protocol. Banquet observes that
it is sufficient to compute the verification circuit for correct AES evaluation instead of
computing the AES evaluation itself. This change does not affect the applicability of
our security notion. Banquet further shows how to improve in efficiency by removing
the preprocessing again and using an MPC protocol specifically tailored to evaluating
the AES evaluation verification, which again is a modification to the decomposition used
with modifications to verification.

7 EasyCrypt Formalization

In this section we present how we checked our security proof of ZKBoo (Section 3.2) in
EasyCrypt. The formalization consists of several parts: We formalize our decomposition
notion introduced in Section 4.1 as well as Σ-protocols as the final security objective.
Moreover, we implement our version of the ZKBoo decomposition from Section 4.2 and
prove it to be a secure decomposition. Finally, we implement and prove the security of
a Σ-protocol based on any secure decomposition to obtain a complete machine-checked
security proof of ZKBoo. Assume for the rest of this section that some relation R is
fixed, and that the Σ-protocol we construct wants to prove knowledge of a witness for a
statement in the relation.

7.1 EasyCrypt

EasyCrypt [10] is a proof assistant designed specifically to capture the code-based game-
playing approach to cryptographic proofs [16]. In EasyCrypt, protocols are modeled as
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probabilistic programs. The tool provides an ambient higher order logic and an embed-
ded probabilistic relational Hoare logic to reason about a probabilistic while language.
It offers powerful automation through its interaction with SMT solvers. Proving secu-
rity of a cryptographic protocol proceeds by proving a series of game transformations.
Each transformation either moves a procedure call or substitutes them. This reduc-
tion is captured in the relational Hoare logic. Additionally, EasyCrypt has support for
defining abstract (ML-style) modules. With abstract modules, one can formulate se-
curity specification by quantifying over all possible implementations of a module. This
makes black-box style security proofs possible. In such proofs, one only relies on abstract
security notions as opposed to on concrete implementation details of the protocol.

7.2 Σ-Protocol

We start by explaining the target of our formalization: Σ-protocols. As is common
in EasyCrypt, we model this primitive as an abstract module. Similar to the work
of Butler et al. in CryptHOL [17], we choose four procedures corresponding to the
generation of the three messages exchanged as well as the final verification step. Note
that we generalize their security definitions to encapsulate s-Special Soundness, rather
than 2-Special Soundness. The security properties are then expressed as follows:

• Completeness:

∀h, x, e : R h x

=⇒ Pr[completeness game(h, x, e) = true] = 1.

• s-Special Soundness:

∀h, x : R h x =⇒ real(h, x, e) ∼ ideal(h, e)

• Special Honest-Verifier Zero-Knowledge:

∀h,a, es, vs :

(∀i, 0 ≤ i < |es| : Pr[sverify(h, a, es[i], vs[i])] = 1)

∧ |es| = |vs| ∧ (∀(e, e′) ∈ es : e 6= e′)

=⇒ Pr[soudness game(h, a, es, vs)] = 1

The programs used to express the game-based security can be seen in Figure 5.

7.3 Commitments

To implement the Σ-protocol we are interested in, we need two components: a com-
mitment scheme and a decomposition. The commitment scheme notion we use is an
adaptation of the work of Butler et al. [17], and Metere and Dong [18], but we altered
some game-based definitions to ones defined as relational Hoare statements. This af-
fects the hiding property which is more conveniently stated directly as a property of
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completeness game(h, x, e) =

a← scommit(h, x);

z ← sresponse(h, x, a, e);

return sverify(h, a, e, z);

real(h, x, e) =

a← scommit(h, x);

z ← sresponse(h, x, a, e);

return (a, e, z);

ideal(h, e) =

(a, z)← S(h, e);

return (a, e, z);

soundness game(h, a, es, zs) =

x′ ← extractor(h, a, es, za);

return R h w x′

Figure 5: Σ-Protocol games

the output distribution of com for the purpose of our proofs. Again, we formalize the
commitment scheme as an abstract module with procedures for the different algorithms
according to Def. 2.1 and the security properties as:

• Correctness:

∀m : Pr[cverify(m, com(m)) = true] = 1.

• Hiding:

∀m,m′ : com(m) ∼ com(m′).

• Binding: ∀c,m,m′ :

Pr[cverify(m, c) ∧ cverify(m′, c)] = 1− ε.

7.4 Decomposition

The next part is the heart of our formalization, the formalization of our decomposition
notion from Section 4.

7.4.1 Circuits and Views

First, we choose representations for both the circuit and the state of each individual
party. To deal with circuit evaluation, we need a method for associating gates and
intermediate computations. This is similar to MPC protocols. We chose to represent
both our circuit and views as lists, as this gives us a one-to-one correspondence between
gates and shares: the intermediate value for circuit[i] can then be found at view[i].
Furthermore, lists allow convenient induction proofs.
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7.4.2 Security

The security properties are stated as statements in (relational) Hoare logic.

• Verifiability:

∀(φ : Circuit)(e ∈ C)(x : Input) :

valid circuit(φ) =⇒
Pr[verifiability game(φ, x, e) = true] = 1.

• d-Privacy:

∀(φ : Circuit)(e ∈ C)(x : Input) :

real(φ, x, e) ∼ simulator(φ, φ(x), e).

where real and simulator are defined in definition 4.3.

• s-Special Soundness:

∀(φ : Circuit)(es ∈ list C)(vs : list view)(ys : list shares) :

(∀i, 0 ≤ i < n : Pr[verify(φ, es[i]), vs[i], ys = true] = 1.)

∧ |vs| = |es| ∧ ∀(e, e′) ∈ es : e 6= e′ ∧ |ys| = n

∧ valid circuit(φ) ∧ fully consistent(vs, es)

=⇒ Pr

[
c(witness extractor(φ, vs, es)) =

rec (map out ys)

]
= 1.

• Losslessness of compression:
∀(w : V iew), uncompress(compress(w)) = w.

The third property uses a helper predicate fully consistent({vs1, . . . , k}, {es1, . . . esk}).
A collection of list of views with respective challenges are fully consistent if the view of
party constrained within two different list of views vsa, vsb are equivalent.

7.5 ZKBoo Decomposition

With the primitives in place, we can now describe our implementation of ZKBoo as well
as the security proofs, starting with the decomposition part.

7.5.1 Computation and ”communication”

The implementation of most procedures of the decomposition is straightforward, the only
part that requires a bit of thought is decompose. This is where the gate computation
function φ from the original ZKBoo work comes in handy. While we removed it from
the decomposition notion itself, it plays a useful role in the implementation. We thus
fix a procedure

compute : list view × gate→ list share

that updates the views of all parties for gate gate. This updating of all shares simulta-
neously models the emulation of communication as required.
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7.5.2 Randomness sampling

When implementing a probabilistic program there are two ways to sample randomness:
lazy and eager sampling. Both are equivalent, and both are possible in EasyCrypt.
Eager sampling samples all randomness at the start of the execution. When a new
random value is needed the next unused value is used. In the case of ZKBoo, that
means sampling randomness outside of the decompose procedure. This is necessary for
the construction of a Σ-protocol as that protocol needs some control over the random
choices. Lazy sampling on the other hand samples randomness at the moment it is
needed in the protocol, and has the advantage that it enables to reason about random
choices locally. In the case of proving a relational statement, one often wants to relate
random choices in the two programs via a coupling, which is easier with lazy sampling.
For this reason, we define two versions of decompose, one that takes all randomness as
input, and one that samples internally, and prove them equivalent. The former is more
convenient to describe the construction itself while the latter simplifies the security proof.

7.5.3 Security

We prove verifiability by showing the views produces by decompose are computed fol-
lowing the procedure outlines in Section 3.2 and reconstruct to the value of circuit
evaluation. This is achieved by induction on the structure of the circuit. With this in
mind, showing that verify will always succeed following compress ◦ decompose follows
immediately. In particular, since compress is a projection, we can directly apply the
invariant proven on the views of decompose.

Privacy is proven using a relational statement. For any valid circuit, we show that
view e and e + 1 are identically distributed to the two simulated views. By induction
on the structure of the circuit, we show that any gate can be simulated. To facilitate
the proof we rewrite the procedures to use lazy sampling. With lazy sampling, we can
easily manipulate the random shares in both the simulator and decomposition to make
the computed shares indistinguishable. Last, we reuse the proof from verifiability that
the views reconstruct to circuit evaluation. This fixes the output share of the party not
simulated to be the simulated output value subtracted from the circuit evaluation.

To prove k-Special Soundness we use fully consistent to derive knowledge of each
view in the decomposition. Moreover, the assumption of all revealed views verifying allow
us to derive that all gates of all views were computed as defined by the decomposition.
To show that the input share of the revealed views gives us the secret input for the circuit
evaluation we run the decomposition again. We then show by induction on the circuit
that each gate computed, starting from our guess at the secret input, are equal to the
shares computed in the revealed views. In particular, the output shares computed form
our guess will be equal to the output shares revealed. By the reconstruction property
proven during verifiability, we can conclude that our guess at the input leads to the
correct reconstructed output, which is equal to the output of circuit evaluation.
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7.6 Transformation to Σ-protocol

Finally, we arrive at the Σ-protocol that is our main interest. Due to the security
definitions of decompositions (Def. 4.1), the transformation is black-box and can be con-
structed formally independent of implementation details. In the sense of our EasyCrypt
formalization, this means that the construction is parameterized by an arbitrary decom-
position and can be instantiated with the ZKBoo decomposition described above to yield
the ZKBoo protocol.

We fix the relation of the Σ-protocol as R (φ, y) x ⇐⇒ φ(x) = y. The procedure
implementations are seen in Figure 6.

scommit((φ, y), x) =

ks← R;

ws← decompose(φ, x, ks);

cs← map com ws;

ys← map out ws;

return (ys, cs);

sresponse((φ, y), (cs, ys), e) =

z ← compress(ws, I(e));

return z;

sverify((φ, y), (cs, ys), e, z) =

ws← uncompressz;

v ← ∀i ∈ I(e) : cverify(ws[i], cs[i]);

return v ∧ verify(φ, z, e, ys);

Figure 6: Σ-Protocol transformation procedures

7.6.1 Security

Lemma 7.1 (Completeness). If the underlying decomposition satisfies verifiability and
the commitment scheme is correct, then

∀(φ : Circuit)(e ∈ C)(x : Input) :

R h x =⇒ Pr[Completeness(φ, x, e) = true] = 1.

To prove Completeness we consider the decomposition and commitment scheme parts
separately. By applying verifiability of the decomposition, it is clear that the verification
check will pass, since the views originate from a call to decompose. For the commitment
scheme, we first use losslessness of the decomposition to derive that the views considered
by the verifier are, in fact, identical to the ones produced by the prover. We then apply
correctness of the commitment scheme to conclude that the commitments always verify
given the view that was committed to.
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Lemma 7.2 (SHVZK). If the underlying decomposition is d-Private, for any d, and the
commitment scheme is perfectly hiding, then

∀h, (e ∈ C), x :

R h x =⇒ real(h, x, e) ∼ ideal(h, e).

Where the simulator is defined as:

simulator((φ, y), e) = {
(z′, ys)← Se(φ, y);

ws′ ← uncompress(z′);

cs← map

λi : if i ∈ I(e)

then com(ws′[i])

else com([ ])

 [0..N ];

return (ys, cs)}

In proving Special Honest-Verifier Zero-Knowledge, we first use d-Privacy of the
decomposition to show the simulated views revealed by compress under challenge e
are indistinguishable from the real views. The indistinguishability also implies that
both verify and cverify will succeed, since their inputs are indistinguishable from
the honestly generated inputs which are known to succeed. Lastly, we use the hiding
property of the commitment scheme to conclude that commitments to empty lists are
indistinguishable from the commitments to the unrevealed views of the decomposition.

Lemma 7.3 (s-Special Soundness). If the underlying decomposition has k-Special Sound-
ness and the commitment scheme is binding with probability 1− ε, then

∀(φ : Circuit), (es ∈ C)y, a, es, zs :

(∀(e, e′) ∈ es : e 6= e′)

∧ |es| = |vs| = s ∧ valid circuit(c)

∧ (∃(a ∈ es, b ∈ es, i) : a 6= b ∧ i ∈ vs[a] ∧ i ∈ vs[b])
∧ (∀i, i < |es| : Pr[sverify(c, y, a, es[i], vs[i]) = true] = 1)

=⇒ Pr[soundness game((φ, y), a, e, z) = true] = (1− ε).

From k-Special Soundness of the decomposition, it follows that we can extract a
valid witness for the relation. The assumptions of s-Special Soundness must therefore
imply the assumptions of k-Special Soundness from the decomposition. Concretely, this
is achieved by proving:

(∀i, i < |es| : Pr[sverify(φ, y, a, es[i], vs[i]) = true] = 1)

=⇒ fully consistent(vs, es).

To show this, we use the binding property of the commitment scheme. We assume
that we are given enough responses, such that at least two responses will overlap on at
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least one view. With this overlap in mind, it follows from the binding property that the
two different openings are equivalent.

From the overlap and the proof of equivalence, we derive that the responses are fully
consistent.

8 Related Work

We list work on formal verification of zero-knowledge protocols.

Computational Analysis One approach is to formalize security proofs of zero-knowledge
protocols, which is also the focus of this work. Previous work in this direction includes
ZKCrypt by Almeida et al. [19] which automatically generates CertiCrypt proofs [20] of
the resulting protocols. The work of Butler, Aspinall and Gascón [17] focuses on formal-
izing Σ-protocols in CryptHOL [21]. Both have in common that they focus on simpler
algebraic protocols, like proving knowledge of pre-images under group homomorphisms.
This limits usability to problems which exhibit this simpler algebraic structure. The
present work formalizes more sophisticated protocols in which security is reduced to the
security of complex building blocks like MPC protocols. The zero-knowledge protocols
that we study use secret-sharing-based MPC as building block. This type of MPC pro-
tocol has been formalized previously by Butler, Aspinall and Gascón [22] and Haagh et
al. [23]. Our MPC protocol formalization is close in spirit to the passive security con-
struction of Haagh et al., yet it differs in that we directly formalize a simulation-based
security notion which is more familiar to cryptographers than the non-interference used
there.

Symbolic Analysis An orthogonal line of work studies the symbolic security of pro-
tocols that use zero-knowledge protocols as primitives [24,25]. In this setting, the zero-
knowledge proofs themselves are treated as abstract objects that can be manipulated
according to fixed rules modeled as equational theory. Symbolic security of a protocol
then rules out any attack that follows only those allowed manipulations. This approach
cannot capture the security of a concrete zero-knowledge protocol, but only of another
protocol that uses it.

9 Discussion and Future Work

This present work shows how formal verification cannot only recreate existing proofs,
but also foster a deeper understanding of the object in question. In our case, we set
out to formalize the ZKBoo security proof and found out that what looked like a mod-
ular proof structure was actually not as modular as it could be. Obvious future work
includes extending our efforts to more efficient protocols following the MPC-in-the-head
paradigm, in particular in case any of them becomes standardized. As mentioned, Pic-
nic was recently announced as alternate in the third round of the NIST post-quantum
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cryptography standardization competition. The reason Picnic is an alternate and not a
candidate is because of the variety of proposals that were published after the submission
of Picnic. Once the line of research converges to one or more efficient constructions
ready for standardization, we expect our work to form the basis of further formal veri-
fication efforts, possibly even connecting our work with an actual implementation. On
the other hand, the structures that we identified in this work can hopefully enhance the
understanding of the MPC-in-the-head paradigm and provide insights into possibilities
for further optimization and constructions.

10 Conclusion

We initiated the formal analysis of zero-knowledge protocols following the MPC-in-the-
head paradigm. Based on the observation that existing constructions are black-box in
the MPC protocol they use while their security analysis is not, we proposed a new
security notion for these MPC protocols. This modular security proof then enabled us
to develop a machine-checked security proof of the ZKBoo protocol in EasyCrypt as an
example of this protocol class.
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