
Proposal: Σ-protocols

Stephan Krenn1 and Michele Orrù2

1 AIT Austrian Institute of Technology, Vienna, Austria
2 University of California, Berkeley, United States

Abstract. Over the last years, zero-knowledge proofs of knowledge based
on Σ-protocols have found numerous applications. However, up to date
there is still a lack of standardization of such protocols, potentially hin-
dering even broader deployment, and increasing the risk of insecure im-
plementations. This document proposes a standardization effort for non-
interactive Σ-protocols in prime order groups, allowing for AND and OR
composition, either in compact (challenge, response) or batchable form
(commitment, response). The document provides the necessary formal
background, specifies the protocols in full details, provides examples,
suggests concrete instantiations (e.g., regarding the selection of elliptic
curves or hash functions), and provides guidelines to ease the secure and
compatible implementation of Σ-protocols.

Keywords: Zero-knowledge proofs of knowledge · Σ-protocols.

1 Introduction

Zero-knowledge [GMR89] proofs of knowledge [BG93] allow a prover to
convince a verifier that he knows a secret piece of information, without
revealing anything else that what is already revealed by the claim it-
self. Many practically relevant proof goals can be realized using so-called
Σ-protocols, or their non-interactive counterparts, which can be proven
secure in the random oracle model without the need for a common ref-
erence string. Introduced by Schnorr [Sch91] over 30 years ago, they are
now widely used in practice because of their simplicity, maturity, and
versatility.

Σ-protocols played an essential component in the building of a number
of cryptographic constructions, such as anonymous credentials [CMZ14],
password-authenticated key exchange [HR11], signatures [Sch90], ring
signatures [MP15], blind signatures [PS97], multi signatures [NRSW20],
threshold signatures [KG20] and more. Lueks et al. [LKF+19], reported
that solely in the years 2018-2019 editions of PETS, ACM CCS, WPES,
NDSS, 7 publications use Σ-protocols. Yet, there is no standardized way
of implementing them and as a result a lot of implementations have shared
common pitfalls (cf. Section 2).

2 S. Krenn and M. Orrù

We make a first attempt at the standardization of Σ-protocols by
proposing a framework for proving statements about discrete logarithms
and related relations in prime-order groups, targeting specifically groups
in elliptic curves. To the best of our knowledge, currently deployed and
implemented Σ-protocols mostly rely on the following sub-set of features:

– Discrete logarithm equality, Diffie-Hellman triples. Proving
discrete logarithm equality, DDH triples, or more in general linear re-
lations among secrets is an essential task for some protocols. This is
the case of some VOPRFs such as [JKK14], which is currently in pro-
cess of standardization [DSW19], and internally employs Σ-protocols
to prove discrete logarithm equality. DLEQ proofs are also being used
by Privacy Pass [DGS+18], a lightweight anonymous credential that
has been implemented and deployed at scale by Cloudflare, Brave
Browser, and others. There are also other works, published in recent
academic conferences, that rely on this type of relations: Cryptogra-
phy for #metoo [KKR19]; Solidus [CZJ+17]; ClaimChain [KLI+18].

– Knowledge of plaintexts, openings of commitments The so-
called AND-composition of dlog relations has been used over a number
of protocols, including in Algebraic MACs [CMZ14]. Algebraic MACs
are now used in Signal’s group chats [CPZ20] and deployed to millions
of users.

– Proving knowledge of one among multiple discrete logarithms.
OR-composition ofΣ-protocols has been used for range proofs [MP15],
and ring signatures: it enables for private transactions in CryptoNote
(Monero) [Noe15]. OR-composition is also used in other tools such as
Mesh [AG19].

All these protocols can be implemented using the API that we propose
in Section 4.2. A request for standardization has also been posted on the
zk-proof community and received a fair amount of interest.

2 Background and Motivation

So far, there has been little literature meant to help cryptography en-
gineers implement correctly Σ-protocols for arbitrary statements about
discrete logs. Despite Schnorr signatures and zero-knowledge proofs have
already been standardized (respectively in [JL17] and [Hao17]), there is
still no formal, established way to implement Σ-protocols and their com-
position. Additionally, as academic papers focus on proving the security
of Σ-protocols in generic cyclic groups, the implementation details are

https://community.zkproof.org/t/standardizing-sigma-protocols/471/

Proposal: Σ-protocols 3

often times overlooked, and, as a result, a lot of insecure implementations
have been published in the past. To name a few, well-known pitfalls that
have led to insecure implementations:

– Implementation over non-prime order groups led to small
subgroup attacks. The cyclic group where proofs are being im-
plemented must be carefully selected. Implementing Σ-protocol over
Weierstrass curves is appealing for its performances and straight-line
scalar multiplication formulæ. However, the presence of a small cofac-
tor could be fatal for security. In 2017, Monero [tt17] disclosed a vul-
nerability in Cryptonote-based e-currencies that would allow double-
spending due to the use of curve25519 [Ber06] in place of a prime-
order curve.

– Leakage, partial leakage, or reuse of the commitment is fa-
tal. The first message in a Σ-protocol, sometimes called nonce or
commitment, must be uniformly distributed in order to preserve zero-
knowledge. Leakage of even just of a few bits of the nonce could allow
for the complete recovery of the witness [HGS01,Ble00,ANT+20]. A
blatant instance of this mistake was uncovered in 2010, by the hacker
group fail0verflow (for EC-DSA). They showed how SONY was
reusing the same nonce for digitally signing PlayStation 3 games3.
The member could exploit this to calculate the private key, and cre-
ate valid signatures.

– A weak implementation of Fiat–Shamir heuristic compro-
mises adaptive security. The second message in a Σ-protocol,
sometimes called challenge, if computed non-interactively must in-
clude not only the commitment, but the full statement and the group
description.

If the random oracle is invoked solely on the commitment (c.f. weak
Fiat-Shamir transformation [BPW12, Def. 2]), then it is possible,
given a proof π, to produce another proof π′ for a different statement
without knowing its witness. For instance, if the group generator G is
not included in the hash input, then it is possible to prove statements
under a different generator αG, for any α ∈ Zp. Similarly, if X ∈ G,
part of the statement, is not included in the query to the random ora-
cle, it is possible to compute proofs for βX, for any β ∈ Zp. Mistakes
of this class were uncovered by Bernhard et al. [BPW12], by Haines
et al. [HLPT20], and by Cortier et al. [CGY20]. They all showed how
some voting systems, respectively Helios, Scytl-SwissPost, and Bele-

3 https://media.ccc.de/v/27c3-4087-en-console_hacking_2010

https://media.ccc.de/v/27c3-4087-en-console_hacking_2010

4 S. Krenn and M. Orrù

nios, incorrectly implemented the Fiat–Shamir heuristic, allowing for
tampering of votes.

We stress that is not straightforward to implement Σ-protocols given the
currently available engineering literature. For instance, the current stan-
dardized ed25519 cannot be immediately adapted to a zero-knowledge
proof in a secure way, because of its malleability [BDL+12, p. 7], and the
different behavior on the batched and compressed form4.

Hence, we hereby propose the creation of a working group that in-
cludes both recent cryptanalytic insights as well as the (partial) solutions
described in other known standardization documents.

3 Notation and Terminology

For the purpose of this document, the following notation will be used:
λ main security parameter

a, x, w, . . . elements mod p
G = 〈G〉 cyclic group of prime order p generated by G

G,H, Y, . . . group elements in G
P,V, . . . potentially randomized algorithms
x := 1 assignment of the value 1 to x
x←$S assignment of a uniformly random element in S to x

x← Alg(in) assignment of the output of a randomized algorithm
Alg on input in to x

R binary relation
L(R) language induced by a binary relation R
|y| bitlength of a string

N,Z non-negative natural numbers and integers, respec-
tively

3.1 Formal Definitions

In the following we provide the formal definitions required for the remain-
der of this document.

Definition 1. For two groups G1,G2, a function ϕ : G1 → G2 : x 7→
ϕ(x) is a (group) homomorphism, if and only if for all a, b ∈ G1 it holds
that ϕ(a+ b) = ϕ(a) + ϕ(b).

4 https://hdevalence.ca/blog/2020-10-04-its-25519am

https://hdevalence.ca/blog/2020-10-04-its-25519am

Proposal: Σ-protocols 5

P(w, Y,R) V(Y,R)

(T, st)← P1(w, Y)
T -

c←$ C
c�

s← P2(w, Y, T, c, st)
s -

true/false← V(Y, T, c, s)

Protocol 1: Generic flow of a Σ-protocol.

Σ-Protocols

In the following, we formally describe the class of Σ-protocols, which
covers all protocols considered in the remainder of this document. For an
in-depth discussion of the underlying theory we refer to Cramer [Cra97].

Definition 2. Let R be a binary relation and let (Y,w) ∈ R. An in-
teractive two-party protocol specified by algorithms (P1,P2,V) is called a
Σ-protocol for R with challenge set C, public input Y , and private input
w, if and only if it satisfies the following conditions:

3-move form: The protocol is of the following form (cf. also Protocol 1):

– The prover computes (T, st)← P1(w, Y) and sends T to the veri-
fier, while keeping st secret.

– The verifier draws c←$ C and returns it to the prover.

– The prover computes s← P2(w, Y, c, st) and sends s to the verifier.

– The verifier accepts the protocol run, if and only if V(Y, T, c, s) =
true, otherwise it rejects.

The protocol transcript (T, c, s) is called accepting if the verifier ac-
cepts the protocol run.

Completeness: If (Y,w) ∈ R, then the verifier always outputs true.

k-special soundness: There exists an efficient algorithm Ext which, given
Y and k accepting protocol transcripts (T, ci, si) for i = 1, . . . , k for
public input Y with the same first message but pairwise distinct chal-
lenges (i.e., ci 6= cj for i 6= j), returns w such that (Y,w) ∈ R.

Special honest-verifier zero-knowledge: There exists an efficient al-
gorithm Sim, which on input Y and a challenge c ∈ C, outputs tran-
scripts of the form (T, c, s) whose distribution is indistinguishable from
accepting protocol transcripts generated by real protocol runs on public
input y and with challenge c.

6 S. Krenn and M. Orrù

Note that Σ-protocols were originally introduced for the case k = 2 only.
However, we use the above generalized definition as certain practically
relevant optimization techniques require k > 2.

A Σ-protocol is said to have unpredictable commitments if the prob-
ability of generating a collision in the first message is negligible, i.e., if
there is a negligible function negl(λ) such that for all (Y,w) ∈ R it holds
that:

Pr
[
T ′ = T ′′ : T ′ ← P1(w, Y), T ′′ ← P1(w, Y)

]
≤ negl(λ) .

A Σ-protocol is said to have perfectly unique responses if it is infea-
sible to find two distinct valid responses for a given first message and
fixed challenge, i.e., there exist no values Y, T, c, s′, s′′ with s′ 6= s′′ such
that V(Y, T, c, s′) = V(Y, T, c, s′′) = true. In case that it is only compu-
tationally infeasible (also for a quantum attacker) to find two responses
for given Y, T, c, the protocol is said to have (computationally) unique
responses.

Proof Systems and Proofs of Knowledge

The concept of interactive proofs of knowledge was first mentioned by
Goldreich et al. [GMR85], and then refined by Feige et al. [FFS87]. The
definitions in the following are due to Bellare and Goldreich [BG93].

Intuitively, a proof system is sound, if it is not possible to make
the verifier accept for statements for which no valid witness exists, cf.
also [ZKP19, 1.6.2].

Definition 3. Let R be a binary relation, σ : N→ [0, 1], and let P and V
specify a probabilistic interactive protocol, where at least V is polynomial
time. The protocol is called sound with soundness error σ, if for every
Y /∈ L(R), and every interactive algorithm P∗, the probability that P∗

makes V output true on common input Y is bounded above by σ(|Y |).

Informally, an interactive protocol is a proof of knowledge, if every
party that is able to make the verifier accept with sufficiently high prob-
ability needs to know a valid witness or would be able to compute such a
witness, cf. also [ZKP19, 1.6.3].

Definition 4. Let R be a binary relation, κ : N → [0, 1] and let P and
V specify a probabilistic interactive protocol, where at least V is polyno-
mial time. The protocol is then called a proof of knowledge for R with
knowledge error κ, if the following conditions are satisfied:

Proposal: Σ-protocols 7

Completeness: If (Y,w) ∈ R, then the verifier (on input Y) always
outputs true in an interaction with the prover (on input (Y,w)).

Knowledge soundness: There exists a probabilistic algorithm Ext (the
knowledge extractor) and a polynomial poly(λ) such that the following
holds: for every interactive algorithm P∗ and every Y ∈ L(R), let
ε(Y,P∗) be the probability that P∗ makes V output true on common
input Y . If ε(Y,P∗) > κ(|Y |), then Ext, having rewindable black-box
access to P∗, outputs w′ satisfying (Y,w′) ∈ R in an expected number

of steps bounded by poly(|Y |)
ε(Y,P∗)−κ(|Y |) .

Informally, a proof system is simulation sound, if no adversary is able
to generate wrong proofs, even if it can request arbitrary fake proofs from
a simulator. The following definition is taken from Unruh [Unr17].

Definition 5 (Informal). A non-interactive proof system (P,V) is strongly
simulation sound with respect to a simulator Sim, if and only if for any
(potentially quantum) polynomial-time algorithm A, the following proba-
bility is negligible:

Pr
[
VH

′
(Y, π) = true ∧ Y /∈ L(R) ∧ (Y, π) /∈ S : (Y, π)← AH,Sim(1λ)

]
,

where π denotes the proof output by the prover. Here, H is a random
oracle that the adversary has access to, and H ′ is the state of the random
oracle after the A’s output. Furthermore, S is a list of all input/output
pairs of A’s invocations of Sim.

Similarly, the proof system is weakly simulation sound if the following
probability is negligible:

Pr
[
VH

′
(Y, π) = true ∧ Y /∈ L(R) ∧ Y /∈ S : (Y, π)← AH,Sim(1λ)

]
,

where S now only contains the inputs of A’s invocations of Sim.

Finally, simulation extractability models the property that any adver-
sary being able to generate a valid proof for a statement Y needs to know
a valid witness w for Y , even if it had seen many simulated proofs before.
We omit a formal definition here, and refer, e.g., to Unruh [Unr17].

4 Constructions for Σ-Protocols

This section is structured in two main parts: in Section 4.1, we study the
generic construction of Σ-protocols in prime-order groups. In Section 4.2,
we study AND and OR-composition of the basic protocol. For in-depth
discussions of such protocols we refer to [Ban05,Mau09,Mau15].

8 S. Krenn and M. Orrù

4.1 Basic Σ-Protocols in Prime-Order Groups

A basic Σ-protocol for the relation:

R = {((Y1, . . . , Ym), (w1, . . . , wn)) : (Y1, . . . , Ym) = ϕ(w1, . . . , wn)}

for a group homomorphism ϕ : Znp → Gm is given by the following algo-
rithms:

1. The prover’s first algorithm P1(w,Y) consists of the following steps:

(a) It chooses random elements r1, . . . , rn←$Zp.
(b) It then computes (T1, . . . , Tm)← ϕ(r1, . . . , rn).

(c) The algorithm sets st := (r1, . . . , rn) and T := (T1, . . . , Tm).

(d) It finally outputs (T, st).

2. The prover’s second algorithm P2(w,Y, c, st) proceeds as follows:

(a) It checks that c ∈ Zp and aborts if this is not the case.

(b) It then parses (r1, . . . , rn) := st and (w1, . . . , wn) := w.

(c) It computes its response as si := ri + cwi for i = 1, . . . , n.

3. The verifier’s algorithm V(Y,T, c, s) proceeds as follows:

(a) It parses (s1, . . . , sn) := s, (T1, . . . , Tm) := T, and (Y1, . . . , Ym) =
Y.

(b) It checks that si ∈ Zp for i = 1, . . . , n and Tj ∈ G for j = 1, . . . ,m,
and outputs 0 if this is not the case.

(c) It checks whether (T1 + cY1, . . . , Tm + cYm) = ϕ(s1, . . . , sn), and
outputs true if this is the case; otherwise, V outputs false.

4. The required simulator Sim(Y, c) for a basic Σ-protocol works as fol-
lows:

(a) It parses (Y1, . . . , Ym) := Y.

(b) It chooses s1, . . . , sn←$Zp.
(c) It sets (T1, . . . , Tm) := ϕ(s1, . . . , sn)− c(Y1, . . . , Ym).

(d) Finally, the algorithm outputs the simulated transcript by setting
(T, c, s) := ((T1, . . . , Tm), c, (s1, . . . , sn)).

Proving linear relations among witnesses. While the above protocol
allows one to efficiently prove knowledge of a pre-image under a homo-
morphism, many protocols found in the literature require one to prove
relations among witnesses. Specifically, they require to prove relations
like the following:

R =

{
((Y1, . . . , Ym), (w1, . . . , wn)) :

(Y1, . . . , Ym) = ϕ(w1, . . . , wn)
A(w1, . . . , wn) = (b1, . . . , bk)

}
,

Proposal: Σ-protocols 9

P (w, Y,G) V (Y,G)

r←$Zp
T := rG

T -

c←$Zp
c�

s := r + cw
s -

Return true iff
T + cY = sG

Protocol 2: Proving knowledge of a discrete logarithm.

where the matrix A ∈ Zk×np and vector (b1, . . . , bk) ∈ Zkp specify the
system of linear equations.

Proving such a relation can easily by achieved by modifying the above
protocol as follows:

– In Item 1a, the prover draws the randomnesses such that they satisfy
the system of equations, i.e., such that A(r1, . . . , rn) = (b1, . . . , bk).

– In Item 3b, the verifier additionally checks that A(s1, . . . , sn) = (c +
1)(b1, . . . , bk) and outputs false if this is not the case.

– In Item 4b, the simulator draws the responses such that they sat-
isfy the verification equations, i.e., such that A(s1, . . . , sn) = (c +
1)(b1, . . . , bk).

Examples

Example 1 (DLOG). Let G be a group over an elliptic curve with prime
order p. Proving knowledge of the discrete logarithm w of a point Y in
base G means proving knowledge of w ∈ Zp such that Y = wG. For a
description of this proof goal in the general case of residue classes, we also
refer to [ZKP19, 1.4.1].

Using the above notation, we have ϕ : Z2
p → G : x 7→ xG. The protocol

flow is then as depicted in Protocol 2.

For a given challenge c ∈ Zp, the simulator chooses s←$Zp, and sets
T ← sG− cY . It then outputs the simulated transcript (T, c, s).

Example 2 (DLEQ). Let G be a group over an elliptic curve with prime
order p. Proving equality of the known discrete logarithm w of Y1 in base
G and Y2 in base H means proving knowledge of (w1, w2) ∈ Zp such that
Y1 = w1G and Y2 = w2H, and w1 = w2.

10 S. Krenn and M. Orrù

Using the above notation, we have ϕ : Zp → G2 : (x1, x2) 7→ (x1G, x2H).
The linear system of equations A(w1, w2) = b is given by w1 − w2 = 0.
The protocol flow is then as depicted in Protocol 3.

For a given challenge c ∈ Zp, the simulator chooses s1, s2←$Zp such
that s1 − s2 = 0, and sets T1 ← s1G− cY1 and T2 ← s2H − cY2. It then
outputs the simulated transcript ((T1, T2), c, (s1, s2)).

Example 3 (DLEQ; alternative). The same proof goal as in the previous
example can also be achieved by considering a slightly different homo-
morphism, which directly encodes the linear relation, that is ϕ : Zp →
G2 : x 7→ (xG, xH). The protocol flow is then as depicted in Protocol 4.

For a given challenge c ∈ Zp, the simulator chooses s←$Zp, and sets
T1 ← sG− cY1 and T2 ← sH − cY2. It then outputs the simulated tran-
script ((T1, T2), c, s).

Remark 1. The two protocols illustrated prove the same statement, but
achieve this via different approaches. The first protocol uses the more
general framework of liner relations among witnesses introduced above.
Alternatively, as shown in the second protocol, the linear relation can
also be realized by directly incorporating the linear relation into the proof
goal, thereby achieving a slightly shorter proof size (as the prover’s last
message consists of one element of Zp less).

However, when proving inhomogeneous linear relations, incorporating
the relation into the homomorphism also requires some additional com-
putations in the target group, which in certain cases might compensate
the advantage of a smaller proof size.

P ((w1, w2), (Y1, Y2), (G,H)) V ((Y1, Y2), (G,H))

r1, r2 ←$Zp such that r1 − r2 = 0
T1 := r1G
T2 := r2H

T1,T2 -

c←$Zp
c�

s1 := r1 + cw1
s2 := r2 + cw2

s1,s2 -

Return true iff
T1 + cY1 = s1G
T2 + cY2 = s2H
and s1 − s2 = 0.

Protocol 3: Proving knowledge of equality of two discrete logarithms.

Proposal: Σ-protocols 11

P (w, (Y1, Y2), (G,H)) V ((Y1, Y2), (G,H))

r←$Zp
T1 := rG
T2 := rH

T1,T2 -

c←$Zp
c�

s := r + cw
s -

Return true iff
T1 + cY1 = sG

and T2 + cY2 = sH.

Protocol 4: Proving knowledge of equality of two discrete logarithms (alternative).

Example 4 (REP). Let G be a group over an elliptic curve of prime order
p. Proving knowledge of a valid opening of a Pedersen commitment means
proving knowledge of w1, w2 ∈ Zp such that Y = w1G+ w2H.

Using the above notation, we have ϕ : Z2
p → G : (x1, x2) 7→ x1G+x2H.

The protocol flow is then as depicted in Protocol 5.

P ((w1, w2), Y, (G,H)) V (Y, (G,H))

r1 ←$Zp
r2 ←$Zp
T := r1G+ r2H

T -

c←$Zp
c�

s1 := r1 + cw1
s2 := r2 + cw2

s1,s2 -

Return true iff
T + cY = s1G+ s2H

Protocol 5: Proving knowledge of representation.

For a given challenge c ∈ Zp, the simulator chooses s1, s2←$Zp, and
sets T := s1G + s2H − cY . It then outputs the simulated transcript
(T, c, (s1, s2)).

Example 5 (DH). Let G be a group over an elliptic curve with prime
order p. Proving knowledge of the exponents of a valid Diffie-Hellman
triple means proving knowledge of w1, w2 ∈ Zp such that Y1 = w1G,
Y2 = w2G, and Y3 = w1w2G. Yet, the mapping Z2

p → G3 : (x1, x2) 7→
(x1G, x2G, x1x2G) is not a homomorphism, and consequently the basic
protocol presented before cannot be deployed directly. However, the re-

12 S. Krenn and M. Orrù

P ((w1, w2), (Y1, Y2, Y3), G)) V ((Y1, Y2, Y3), G)

r1 ←$Zp
r2 ←$Zp
T1 := r1G
T2 := r2G
T3 := r2Y1

T1,T2,T3 -

c←$Zp
c�

s1 := r1 + cw1
s2 := r2 + cw2

s1,s2 -

Return true iff
T1 + cY1 = s1G
T2 + cY2 = s2G

and T3 + cY3 = s2Y1

Protocol 6: Proving knowledge of representation.

quired multiplicative relation can be proven by observing that the proof
goal is equivalent to Y1 = w1G, Y2 = w2G, and Y3 = w2Y1, leading the
homomorphism ϕ : Z2

p → G3 : (x1, x2) 7→ (x1G, x2G, x2Y1).

The protocol flow is then as depicted in Protocol 6.

For a given challenge c ∈ Zp, the simulator chooses s1, s2←$Zp, and
sets T1 := s1G − cY1, T2 := s2G − cY2, and T3 := s2Y1 − cY3. It then
outputs the simulated transcript ((T1, T2, T3), c, (s1, s2)).

As shown in this example, and in contrast to linear relations, mul-
tiplicative relations among witnesses typically require a reformulation of
the proof goal in order to be compatible with the generic protocol pre-
sented above. We refer, e.g., to Krenn [Kre12] for generic techniques.

4.2 Composition of Σ-Protocols

In this section, we recap composition techniques of Σ-protocols. Specif-
ically, we define mechanisms for proving knowledge of multiple indepen-
dent witnesses (AND composition), and for proving knowledge for one
out of a set of witnesses (OR composition). Without loss of generality,
the techniques presented in the following focus on the composition of two
protocols; proving knowledge of more than two witnesses, or for out of a
larger set of witnesses, can directly be achieved by iteratively deploying
the techniques.

For the rest of this section, we let (P0
1,P

0
2,V

0) and (P1
1,P

1
2,V

1) be the
specifications of two Σ-protocols for two relations R0 and R1, and let Sim0

and Sim1 be their simulators.

Proposal: Σ-protocols 13

Furthermore, for the ease of presentation, we assume that all protocols
to be composed are based on groups of the same prime order p. If this
is not the case, the constructions can easily be adapted by setting the
challenge set to the smaller of the two challenge sets.

AND Composition. In the following we explain how to construct a Σ-
protocol proving knowledge of multiple independent witnesses. That is,
the algorithms specified below constitute a Σ-protocol for the following
relation:

R∧ =
{

((Y 0, Y 1), (w0, w1) : (Y 0, w0) ∈ R0 ∧ (Y 1, w1) ∈ R1
}
.

1. The prover’s first algorithm P1(w,Y) consists of the following steps:

(a) The algorithm parses (w0, w1) := w and (Y 0, Y 1) := Y.

(b) It computes (T 0, st0)← P0
1(w0, Y 0) and (T 1, st1)← P1

1(w1, Y 1).

(c) The algorithm outputs (T, st) := ((T 0, T 1), (st0, st1)).

2. The prover’s second algorithm P2(w,Y, c, st) proceeds as follows:

(a) It checks that c ∈ Zp and aborts if this is not the case.

(b) It parses (st0, st1) := st
(c) It computes s0 ← P0

2(w0, Y 0, c, st0) and s1 ← P1
2(w1, Y 1, c, st1).

(d) It outputs s := (s0, s1).

3. The verifier’s algorithm V(Y,T, c, s) proceeds as follows:

(a) It parses (s0, s1) := s.

(b) The algorithm outputs V0(Y 0, T 0, c, s0) ∧ V1(Y 1, T 1, c, s1).

4. The required simulator Sim(Y, c) works as follows:

(a) It parses (Y 0, Y 1) := Y.

(b) It chooses c←$Zp.
(c) It computes (T 0, c, s0)← Sim0(Y 0, c) and (T 1, c, s1)← Sim1(Y 1, c).

(d) Finally, the algorithm then outputs (T, c, s) := ((T 0, T 1), c, (s0, s1)).

OR Composition. In the following we explain how to construct a Σ-
protocol proving knowledge of one out of a set of witnesses. That is,
the algorithms specified below constitute a Σ-protocol for the following
relation:

R∨ =
{

((Y 0, Y 1), (w0, w1) : (Y 0, w0) ∈ R0 ∨ (Y 1, w1) ∈ R1
}
.

In the following protocol specification, let j be such that wj is known
to the prover, whereas without loss of generality w1−j is assumed to be
unknown to the prover.

14 S. Krenn and M. Orrù

1. The prover’s first algorithm P1(w,Y) consists of the following steps:

(a) It parses (w0, w1) := w and (Y 0, Y 1) := Y, where w1−j = ⊥.
(b) It computes (T j , stj)← Pj1(Y j , wj).
(c) It computes a simulated transcript for the unknown witness by

choosing c1−j←$Zp and setting (T 1−j , c1−j , s1−j)← Sim1−j(Y 1−j , c1−j).
(d) The algorithm outputs (T, st) := ((T 0, T 1), (stj , c1−j , s1−j)).

2. The prover’s second algorithm P2(w,Y, c, st) proceeds as follows:

(a) It checks that c ∈ Zp and aborts if this is not the case.
(b) It parses (stj , c1−j , s1−j) := st.
(c) It computes cj := c− c1−j , and sets sj ← Pj2(wj , Y j , cj , stj).
(d) It computes s0 ← P0

2(w0, Y 0, c, st0) and s1 ← P1
2(w1, Y 1, c, st1).

(e) It outputs s := (s0, s1, c0).

3. The verifier’s algorithm V(Y,T, c, s) proceeds as follows:

(a) It parses (s0, s1, c0) := s.
(b) It sets c1 := c− c0.
(c) The algorithm outputs V0(Y 0, T 0, c0, s0) ∧ V1(Y 1, T 1, c1, s1).

4. The required simulator Sim(Y, c) works as follows:

(a) It parses (Y 0, Y 1) := Y.
(b) It chooses a random c0 in Zp and computes c1 := c− c0.
(c) It then computes (T 0, c0, s0) ← Sim0(T 0, c0) and (T 1, c1, s1) ←

Sim1(Y 1, c1).
(d) Finally, the algorithm then outputs (T, c, s) := ((T 0, T 1), c, (s0, s1, c0)).

4.3 Achieving Non-Interactivity – The Fiat-Shamir Transform

All protocols described so far require three messages being exchanged
between the prover and the verifier. However, communication rounds are
often considered expensive from an efficiency point of view, and for many
applications interactivity is not desirable.

Remark 2. The interactive version of Σ-protocols presented in this paper
is unfit for practical applications. In this submission, we focus on the
non-interactive transform.

We describe two ways for achieving non-interactivity. Both variants
require identical computations on the prover’s side. The first allows for
efficient batching, but requires point validation and (depending on the
hash function, or the elliptic curve chosen) might lead to slightly larger
proof sizes. The second requires no point validation and only has the hash
value. We call the first variant batchable, and the latter short. Both con-
structions are based on the seminal work of Fiat and Shamir [FS87] and

Proposal: Σ-protocols 15

subsequent work, e.g., by Bernhard et al. [BPW12]. The underlying idea
of the so-called Fiat-Shamir transform is to simulate the verifier’s random
challenge by means of a random oracle, depending on the first message
computed by the prover. More precisely, the challenge is computed as
c := H(Y,T, ctx, τ), where Y is the public image for which knowledge of
a witness is proven, T is the prover’s first message from the Σ-protocol,
τ is a (possibly empty, variable-length) label attached to the proof, and
the context string ctx is a tuple ctx = (domsep, curve, gens, id) containing
the following application-specific information:

– domsep, a string determining uniquely the name of the target appli-
cation (and the proof type);

– curve, a label identifying uniquely the group (e.g. secp-256)

– gens, a full description of the algebraic setting and proof goal (e.g.,
group generators, and constants fixed in the protocol) to achieve non-
malleability;

– id, local context information (e.g., session identifiers of higher level
protocols) to avoid replay-attacks, or shared randomness or a times-
tamp to guarantee freshness of the proof.

The tag τ contains an arbitrary string, possibly empty, that the prover can
attach to the proof. This can allow to construct e.g. signatures and ring
signatures. We discuss more in details the content the hash in Section 6.

Batchable form

1. The prover’s algorithm Pbatch(w,Y, ctx, τ) works as follows:

(a) The algorithm first computes (T, st)← P1(w,Y).

(b) It computes the challenge by setting c := H(T,Y, ctx, τ).

(c) The algorithm defines s← P2(w,Y, c, st).

(d) The algorithm outputs (T, s).

2. The verifier’s algorithm Vbatch(Y, ctx, τ, (T, s)) works as follows:

(a) It recomputes the challenge as c← H(Y,T, ctx, τ).

(b) It outputs whatever V(Y,T, c, s) outputs.

Verification equation. The batchable form can take advantage of the fol-
lowing fact. Given the single verification equations of the form:

Ti + ciYi =
∑
j

si,jGj

16 S. Krenn and M. Orrù

for i = 0, . . . , `−1, the verifier can sample a random vector of coefficients
a ∈ Z`p instead test that:(

`−1∑
i=0

aiTi

)
+

(
`−1∑
i=0

ai · ciYi

)
=

(
`−1∑
i=0

ai · siGi

)
.

If the matrix Gi,j of generators has identical rows, by linearity the right-
hand side can be computed as a single scalar product. If the statements
Yi’s have identical rows, by linearity the second term in the equation can
be computed as a single scalar product. The random vector a can be
deterministically generated by fixing a0 := 1 and setting (a1, . . . , a`−1) :=
PRG(Y,T, c, s) [WNR18].

Short form

1. The prover’s algorithm Pshort(w,Y, ctx, τ) works as follows:
(a) The algorithm first computes (T, st)← P1(w,Y).
(b) It computes the challenge by setting c := H(T,Y, ctx, τ).
(c) The algorithm defines s← P2(w,Y, c, st).
(d) The algorithm outputs (c, s).

2. The verifier’s algorithm Vshort(Y, ctx, τ, (c, s)) works as follows:
(a) The algorithm recomputes the first message T by running the

appropriate steps of the simulator Sim.
More precisely, we stress that, on input a challenge c, all simulators
introduced so far first draw a response s, and then compute the
commitment T from c and s. Instead of sampling s, the algorithm
now uses its input value to recompute T according to the remaining
steps of the simulator.

(b) The algorithm checks that c = H(T,Y, ctx, τ) and rejects if this is
not the case.

4.4 Achieving Concurrent Zero-Knowledge

The basic protocols presented above cannot directly be used for practi-
cal applications, as the zero-knowledge property does not hold against
malicious verifiers. While for most applications the Fiat-Shamir heuristic
is the preferred way to also address this challenge, there might be cases
where interactive protocols are still preferable, e.g., for deniability rea-
sons. The following construction, due to Damg̊ard [Dam00], allows one
to turn any Σ-protocol into a concurrently zero-knowledge version also
against malicious adversaries.

Proposal: Σ-protocols 17

In the following, (Commit,VerCommit) is a commitment scheme, where
the interfaces are as specified in Benarroch et al. [BCF19, Section 4.3].
The commitment scheme used in the following is required to be a trapdoor
commitment scheme (cf., e.g., Fischlin [Fis01] for an in-depth discussion
of such schemes), with a natural candidate being the scheme introduced
by Pedersen [Ped92].

1. The verifier’s first algorithm V1(Y) proceeds as follows:

(a) It samples c←$Zp and computes (com, o) := Commit(ck, c).

(b) It sets stV := (c, o).

(c) It sends com to the prover.

2. The prover’s first algorithm P1(w,Y, com) consists of the following
steps:

(a) The algorithm computes (T′, st′) := P1(w,Y).

(b) It outputs (T, st) := (T′, (st′, com)).

3. The verifier’s second algorithm V1(Y,T, stV) proceeds as follows:

(a) It parses stV = (c, o).

(b) It sends (c, o) to the prover.

4. The prover’s second algorithm P2(w,Y, c, o, st) proceeds as follows:

(a) The algorithm parses st = (st′, com).

(b) It checks that VerCommit(com, c, o) = true and aborts otherwise.

(c) It outputs s := P2(w,Y, c, st′).

5. The verifier’s final algorithm V3(Y,T, c, s) proceeds as follow:

(a) The algorithm outputs V(Y,T, c, s).

5 Security Considerations

In the following, we give a concise overview of the most important security
guarantees provided by the constructions presented above. For full details
and proofs, we refer to the original literature.

Σ-Protocols. The protocol presented in Section 4.1 is a Σ-protocol, if
G is a cyclic group of prime order p, and ϕ : Znp → Gm is a group
homomorphism.

If ϕ is non-trivial (there exists x ∈ Znp such that ϕ(x) 6= (1, . . . , 1) ∈
Gm), the protocol has unpredictable commitments. Finally, if ϕ is an
injective function, the protocol has unique responses.

For details we refer, e.g., to [Cra97].

18 S. Krenn and M. Orrù

Composition. The composed protocols presented in Section 4.2 are Σ-
protocols if the individual protocols areΣ-protocols, see, e.g., [CDS94].

If at least one of the composed protocols has unpredictable commit-
ments, then so have the protocols for R∧ and R∨.

If both protocols have unique responses, then so has the protocol
for R∧. Note that unique responses are not preserved under OR-
compositions.

Proof of Knowledge. All protocols presented in Sections 4.1 and 4.2
are proofs of knowledge, see Damg̊ard [Dam04]. The non-interactive
protocol (cf. Section 4.3) is secure against unbounded malicious provers,
provided that they make a polynomial number of queries to the ran-
dom oracle [PS00]. Existence of a straight-line extractor for non-
interactive Σ-protocols was proposed by Fuchsbauer et al. [FKL18],
but under the (stronger) setting of the algebraic group model.

Concurrent Zero-Knowledge. The protocol in Section 4.4 is concur-
rently zero-knowledge against arbitrary verifiers if the used commit-
ment scheme is a trapdoor commitment scheme, cf. [Dam00].

Completeness. For all theΣ-protocols presented above, the Fiat-Shamir
transform is complete.

For a proof we refer to Unruh [Unr17], which uses the fact that all pre-
sented protocols are complete and have unpredictable commitments;
Unruh also gives a surprising counter-example in case that commit-
ments are not unpredictable.

Zero-Knowledge. For all Σ-protocol presented above, the Fiat-Shamir
transform yields a zero-knowledge protocol in the random oracle model.

For a proof we refer to Faust et al. [FKMV12] and Unruh [Unr17].
These security guarantees also hold against a quantum attacker, and
rely on the honest-verifier zero-knowledge property of Σ-protocols and
the fact that the commitments in all our protocols are unpredictable.

Soundness. If a Σ-protocol has a negligible soundness error, then the
Fiat-Shamir transform is sound according to Definition 3. This secu-
rity guarantee also holds against quantum attackers.

For a proof we refer to Pointcheval and Stern [PS00] and Unruh [Unr17].

Simulation soundness. In all protocols presented in Sections 4.1 and 4.2,
the Fiat-Shamir transform is weakly simulation-sound. If the protocol
additionally has unique responses, then the Fiat-Shamir transform
is strongly simulation-sound. These security guarantees also holds
against quantum attackers.

For a proof we refer to Unruh [Unr17] and Faust et al. [FKMV12].

Proposal: Σ-protocols 19

Table 1. Summary of open-source projects that implement Σ-protocols, along with
features supported. INT stands for interactive; FS stands for Fiat-Shamir. Most of this
table’s data comes from the work of Lueks et al. [LKF+19].

Project Language AND-composition OR-composition INT FS

Cashlib [MEK+10] C++ 3 7 7 3

Emmy [XLA] Go 7 7 3 7

Kyber [DED] Go 3 3 3 3

SCAPI [EFLL12] C++ 3 3 3 3

YAZKC [ABB+10,ABB+12] C 3 3 3 3

zkp [dV19] Rust 3 7 7 3

zksk [LKF+19] Python 3 3 3 3

Simulation extractability. For all protocols presented in Sections 4.1
and 4.2, the non-interactive Fiat-Shamir transform is simulation ex-
tractable [BPW12, Thm. 1].

6 Instantiation

In this section, we consider the concrete security of Σ-protocols and il-
lustrate the main points that should be considered when implementing
them. In Table 1, we report the implementations that we are currently
aware of. This table is greatly inspired from the remarkable bibliographic
work of Lueks et al. [LKF+19].

Choice of a group. We advise for the use of prime-order elliptic curves
of size either 256 or 512 bits, depending on the desired security of the
upper layers in the protocol5. Concretely, we see fit NIST’s p-521 and
p-256 [NIS00]; SECG’s secp256k1 [SEC00], or prime-order group ab-
stractions over non prime-order groups, such as as Decaf [Ham15] and
Ristretto [dVGT+20]6. We note that there exists already standards for
removing small cofactors in elliptic curves [Zuc00]. However we believe
that the complexity added by integrating the handling of the cofactor

5 For instance, proving a DH relation with one fixed group element such as a public key,
might expose the protocol to cryptanalytic attacks such as Brown-Gallant [BG04]
and Cheon’s attack [Che06], and some implementations might opt for larger curve
sizes. We consider these attacks out of scope for this standardization effort, and
believe this analysis should be deferred to the concrete security study of the larger
protocol.

6 We are aware of the threats reported in https://safecurves.cr.yp.to/. It’s how-
ever not clear what should be the alternatives, and if dropping their support would
hinder adoption.

https://safecurves.cr.yp.to/

20 S. Krenn and M. Orrù

within the verification equations is deleterious for the other supported
curves.

We think pairing-friendly curves, such as BLS12-381 [Bow17], should
also be considered for inclusion under relevant assumptions for bilinear
groups, such as XDH when dealing with DH triples.

Choice of the hash functions. We advise for the use of consolidated,
cryptographically secure hash functions such as SHA2, SHA3, and BLAKE2,
BLAKE37. In the non-interactive Σ-protocols, the image of the random
oracle is assumed to be over the field, and translating the output of the
hash function (in {0, 1}∗) into an integer mod p requires care to pre-
serve indifferentiability. To the best of our knowledge, the best options
for performing this operation are the following:

(a) Truncating the output of the hash to 128 bits, and interpreting it as
a small integer mod p. Despite being the most efficient option at our
disposal, it is unclear if the collision probability of 2−64 could be too
small for certain applications;

(b) Truncating the output of the hash to 256 bits, and then reducing
mod p. This is by far the most natural approach; however, the output
distribution could be potentially far from uniformly random, in terms
of statistical distance. Consider e.g. a prime p that is close to 3/4·2256.
Reducing a random 256-bit integer modulo this p yields a value that
is in the range [0, p/3] with probability roughly 1/2 [FHSS+20]. We
remark that, nonetheless, min-entropy wise this will cost at most one
bit of security. Namely, the chances of guessing a specific challenge is
still than negligible despite the bias.

(c) Truncating the output of the hash to dlog2 pe+ κ bits (where κ is the
targeted statistical security level), and then reducing mod p. This is
essentially the procedure hash_to_field as described in [FHSS+20,
Section 5]. This approach leads to a random value statistically close
(2−κ) to a value sampled uniformly at random in Zp.

(d) Rejection sampling, which consists in sampling uniformly at random
in the interval [0, 2λ], until a value in [0, p] is found. Unfortunately,
since the hash function is used also for hashing the initial (secret)
randomness used for computing the commitment, this method is un-
desirable due to the difficulty of implementing in constant-time (which

7 We did not examine closely algebraic hashes for this draft, but we stress that their
adoption could be appealing for a number of applications requiring recursive proofs.
Unfortunately, this requires a much deeper cryptanalysis within a working group.

Proposal: Σ-protocols 21

could lead a secret for the deterministic computation of the commit-
ment).

Despite options Items (b) and (c) are the most fit for computing the
challenge, only option Item (c) is suitable for computing deterministically
also the initial nonce. in the non-interactive case. Item (a) is a valid option
for the interactive version.

Hashing multiple variable-length messages into a single challenge (such
is the case when hashing ctx, τ) requires care, and multiple approaches
have been used in the past. We see three options available:

(a) Replacing variable-length messages with their hash (i.e. hashing mul-
tiple values à la Merkle-Damgard) and computing:

ctx := (H(domsep), curve, gens,H(id))

this is currently what proposed in [WNR18] for the specific case of
the domain separator (in fact, the authors propose to concatenate the
same hash twice to fill an entire SHA-256 block and allow for hash
pre-processing).

(b) Encoding the messages in a common format, and hashing the encoded
message, i.e. computing: ctx := encode(ctx), where encode is a serial-
izer such as e.g. JSON encoding, or netstring [Ber98].

(c) Using a protocol framework such as Strobe [Ham17] that builds a
sponge construction and can be used for building protocol transcripts.
For more information, we direct the reader towards [Ham17, Section
5.3].

Commitment. The first step is the generation of uniformly-distributed
random element(s) over Zp. As mentioned in Section 2, the nonce must be
distributed uniformly at random, and even a small bias in the distribution
could completely compromise zero-knowledge [HGS01,Ble00,ANT+20].

We propose the construction of a synthetic nonce obtained from hash-
ing statement, context, and secret, together with 8 additional bytes from
operating system’s entropy:

r := H(ctx, τ, w, rnd)

where rnd := {0, 1}64 are 64 bits of entropy. The construction of cryp-
tographically secure source of randomness is a difficult problem, that is
particularly challenging on embedded devices such as smart-cards or em-
bedded systems. For those applications for which obtaining a high-quality

22 S. Krenn and M. Orrù

entropy is challenging, a stateful counter would be sufficient to achieve
random r.

Hashing the statement and the witness to obtain a commitment was
already suggested in previous standards [Por13] in the context of de-
terministic nonce generation. While it is widely recognized that having
deterministic nonce helps strengthening the concrete security and miti-
gates the risks associated to the generation of a commitment, it could
on the other hand leak information about the witness used for a proof,
when examining consecutive executions of the protocol. This is e.g. the
case of a OR-proof that attempts to preserve anonymity. Consider a ring
signature for the ring R = (Y0, Y1), and two OR-proofs with the same tag
τ . In a scenario where the nonce is deterministically generated, then the
proofs are identical if the same key is used, and different otherwise.

Computing the challenge. The challenge is computed as:

c := H(Y,T, ctx, τ)

according to the prescriptions of the previous paragraph and section Sec-
tion 4.3. The implementer can pre-process the hash evaluation of the
context ctx and the statement Y.

Response and proof output. The response is computed using standard field
addition and multiplication. The implementation should support batched
and short form, as wrappers around the proof transcript as generated by
P2.

Verification. The implementation should support two different verifica-
tion functions, for batched and short verification. The case of batched
verification must include a point verification sub-routing that asserts
the statement and commitments are in question. Failure to properly
check that a commitment is in the group could lead to subgroup at-
tacks [vW96,LL97] or invalid curve attacks [BMM00,BBPV12].

If verification fails, an exception should be raised. If input parsing
fails, an exception should be raised. Otherwise, the verifier outputs true.
Optionally, the implementation can choose to return the parsed state-
ment.

7 Looking Ahead

To keep this proposal short and open the discussion to a wider community,
we purposely left open some topics that could be interesting for more tight
use cases.

Proposal: Σ-protocols 23

Delayed input. Despite throughout this work we have assumed that the
prover receives as input instance and witness already when computing the
first message, in some Σ-protocols (c.f. Protocols 2, 3 and 4) knowledge
of instance and witness is required only in the last round. Therefore,
the first two messages can be pre-processed obtaining better practical
efficiency. Obviously, this feature relevant only for interactive protocols,
which might include scenarios requiring deniability or of unconditional
soundness.

Unfortunately, the OR composition discussed in Section 4.2 affects the
possible delayed-input property of the underlying Σ-protocols. Consider
for instance the simple OR composition allowing to prove knowledge of
at least one out of two discrete logarithms. Even though the underlying
two Σ-protocols satisfy the delayed-property, the compound Σ-protocol
obtained through [CDS94] forces knowledge of the instances already be-
fore computing the first message. Alternative information-theoretic OR
compositions have been proposed in [CPS+16a], for practical classes of
Σ-protocols requiring that only one out of two instances is known when
the protocol starts and obtaining a compound delayed-input Σ-protocol.
Relying on computational (i.e., DDH) assumptions, in [CPS+16b] it is
shown how to generically (i.e., not just two and no further restrictions)
compose delayed-input Σ-protocols obtaining a compound delayed-input
Σ-protocol.

Designated verifier proofs. A designated-verifier zero-knowledge proof of
knowledge allows the prover to determine an intended receiver for the
proof in a way that guarantees that only the specified receiver can ac-
tually obtain any conviction about the validity of the prover’s claim.
This is important, e.g., in cases where deniability of the communica-
tion is important for privacy reasons, and the prover needs to be en-
sured that the verifier cannot credibly forward the proof to any third
party, as he could have simulated proofs with the same distribution him-
self. Designated-verifier proofs have been studied profoundly in the aca-
demic literature [JSI96,CC18]. The most widely known approach is due
to Jakobsson et al. [JSI96], which achieves the required functionality ba-
sically by proving that “one either knows the secret key, or one is the
designated verifier”. In a nutshell, the idea is that the designated verifier
provides the prover with a public key Ypk, and the verifier then proves
that he knows a witness w for the claimed statement Y for the given rela-
tion R, or the secret key wpk corresponding to Ypk, using the composition
techniques from Section 4.2.

24 S. Krenn and M. Orrù

More formally, let R′ be such that (Ypk, wpk) ∈ R′ if and only if wpk
is a secret key corresponding to Ypk, e.g., R′ = {(Ypk, wsk) : Y = wG}.
Then, the prover computes a proof for the following relation:

RDS = {(Y, Ypk), (w,wpk) : (Y,w) ∈ R ∨ (Ypk, wpk) ∈ R′} .

It can now be seen that the prover is now unable to forward the proof
to a third party, as he could have generated the proof himself using the
secret key. It it worth noting that it is of crucial importance that the
prover’s public key comes together with a proof that the prover indeed
knows the secret key: otherwise, by provable sampling the public key at
random (e.g., as the hash value of some public string), the prover could
credibly claim that he does not know the corresponding key, and thus
could not have generated the transcript himself.

Shared proof computation. Splitting the witness across multiple devices
is very appealing from an applied security perspective. Recently, we saw
a number of protocols based on the same template of of Protocol 1
[KG20,NRS20], especially targeting applications in signatures for cryp-
tocurrencies. Nothing prevents those same techniques to be adopted in
the (more general) topic of Σ-protocols, and we believe the community
should have a discussion if interactive proof generation should be sup-
ported.

R1CS compatibility. It is not clear whether it would be beneficial for
an API of Σ-protocols to be aligned with the current zk-proof effort of
having a uniform language for expressing relations (c.f. the community
reference [ZKP19, section 3], and Drevon’s proposal [Dre19]). Generally,
statements about discrete logarithms are dealt with so-called Camenisch–
Stadler notation, and we believe community should come to agree on the
acceptable trade-offs for expressing the relation in R1CS language.

Acknowledgments

The authors thank Jan Bobolz, Mary Maller, and Ivan Visconti for their
precious reviews and comments during the early stage of this work. This
work has partially been funded by the European Union’s Horizon 2020
framework programme under grant agreement no. 830929 (CyberSec4Europe).

Proposal: Σ-protocols 25

References

ABB+10. José Bacelar Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn,
Ahmad-Reza Sadeghi, and Thomas Schneider. A certifying compiler for
zero-knowledge proofs of knowledge based on sigma-protocols. In Dim-
itris Gritzalis, Bart Preneel, and Marianthi Theoharidou, editors, ES-
ORICS 2010, volume 6345 of LNCS, pages 151–167. Springer, Heidelberg,
September 2010.

ABB+12. José Bacelar Almeida, Manuel Barbosa, Endre Bangerter, Gilles Barthe,
Stephan Krenn, and Santiago Zanella Béguelin. Full proof cryptography:
verifiable compilation of efficient zero-knowledge protocols. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 488–
500. ACM Press, October 2012.

AG19. Riham AlTawy and Guang Gong. Mesh: A supply chain solution with
locally private blockchain transactions. PoPETs, 2019(3):149–169, July
2019.

ANT+20. Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Ti-
bouchi, and Yuval Yarom. LadderLeak: Breaking ECDSA with less than
one bit of nonce leakage. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 20, pages 225–242. ACM Press,
November 2020.

Ban05. Endre Bangerter. Efficient Zero-Knowledge Proofs of Knowledgefor Ho-
momorphisms. PhD thesis, Ruhr-Universität Bochum, Germany, 2005.

BBPV12. Billy Bob Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren.
Practical realisation and elimination of an ECC-related software bug at-
tack. In Orr Dunkelman, editor, CT-RSA 2012, volume 7178 of LNCS,
pages 171–186. Springer, Heidelberg, February / March 2012.

BCF19. Daniel Benarroch, Matteo Campanelli, and Dario Fiore. Com-
munity Standards Proposal for Commit-and-Prove Zero-Knowledge
Proof Systems. ZKProof Community Standard Proposal, avail-
able at https://github.com/zkpstandard/zkreference/tree/master/

standards-proposals, 2019. accessed on February 22, 2021.
BDL+12. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-

Yin Yang. High-speed high-security signatures. Journal of Cryptographic
Engineering, 2(2):77–89, September 2012.

Ber98. D. J. Bernstein. Netstrings. Internet-Draft draft-bernstein-netstrings-02,
Internet Engineering Task Force, August 1998. Work in Progress.

Ber06. Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
PKC 2006, volume 3958 of LNCS, pages 207–228. Springer, Heidelberg,
April 2006.

BG93. Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 390–
420. Springer, Heidelberg, August 1993.

BG04. Daniel R. L. Brown and Robert P. Gallant. The static Diffie-Hellman
problem. Cryptology ePrint Archive, Report 2004/306, 2004. http://

eprint.iacr.org/2004/306.
Ble00. Daniel Bleichenbacher. On the generation of one-time keys in dl signature

schemes. In Presentation at IEEE P1363 working group meeting, page 81,
2000.

https://github.com/zkpstandard/zkreference/tree/master/standards-proposals
https://github.com/zkpstandard/zkreference/tree/master/standards-proposals
http://eprint.iacr.org/2004/306
http://eprint.iacr.org/2004/306

26 S. Krenn and M. Orrù

BMM00. Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks
on elliptic curve cryptosystems. In Mihir Bellare, editor, CRYPTO 2000,
volume 1880 of LNCS, pages 131–146. Springer, Heidelberg, August 2000.

Bow17. Sean Bowe. Bls12-381: New zk-snark elliptic curve construction, 2017.
Available at: https://electriccoin.co/blog/new-snark-curve/.

BPW12. David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove
yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 626–643. Springer, Heidelberg, December 2012.

CC18. Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-
interactive zero-knowledge proofs of knowledge. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822
of LNCS, pages 193–221. Springer, Heidelberg, April / May 2018.

CDS94. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols. In
Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 174–187.
Springer, Heidelberg, August 1994.

CGY20. Véronique Cortier, Pierrick Gaudry, and Quentin Yang. How to fake zero-
knowledge proofs, again. In E-Vote-Id 2020-The International Conference
for Electronic Voting, 2020.

Che06. Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 1–11. Springer, Heidelberg, May / June 2006.

CMZ14. Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs
and keyed-verification anonymous credentials. In Gail-Joon Ahn, Moti
Yung, and Ninghui Li, editors, ACM CCS 2014, pages 1205–1216. ACM
Press, November 2014.

CPS+16a. Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi,
and Ivan Visconti. Improved OR-composition of sigma-protocols. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563
of LNCS, pages 112–141. Springer, Heidelberg, January 2016.

CPS+16b. Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi,
and Ivan Visconti. Online/offline OR composition of sigma protocols. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 63–92. Springer, Heidelberg, May
2016.

CPZ20. Melissa Chase, Trevor Perrin, and Greg Zaverucha. The signal private
group system and anonymous credentials supporting efficient verifiable en-
cryption. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 20, pages 1445–1459. ACM Press, November 2020.

Cra97. Ronald Cramer. Modular Design of Secure yet Practical Cryptographic
Protocols. PhD thesis, CWI Amsterdam, The Netherlands, 1997.

CZJ+17. Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed E. Kosba, Ari Juels, and
Elaine Shi. Solidus: Confidential distributed ledger transactions via
PVORM. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 701–717. ACM Press, Octo-
ber / November 2017.

Dam00. Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string
model. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 418–430. Springer, Heidelberg, May 2000.

https://electriccoin.co/blog/new-snark-curve/

Proposal: Σ-protocols 27

Dam04. Ivan Damg̊ard. On Σ-Protocols. Lecture on Crptologic Protocol Theory;
Faculty of Science, University of Aarhus, 2004.

DED. DEDIS. [n.d.] kyber - dedis advanced crypto library for go. Available at:
https://pkg.go.dev/go.dedis.ch/kyber.

DGS+18. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Fil-
ippo Valsorda. Privacy pass: Bypassing internet challenges anonymously.
PoPETs, 2018(3):164–180, July 2018.

Dre19. Guillaume Drevon. J-r1cs – a json lines format for r1cs. zkproof Pro-
posal, 2019. Available at: https://docs.zkproof.org/pages/standards/
accepted-workshop2/proposal--zk-interop-jr1cs.pdf.

DSW19. Alex Davidson, Nick Sullivan, and Christopher A. Wood. Oblivious Pseu-
dorandom Functions (OPRFs) using Prime-Order Groups. Internet-Draft
draft-sullivan-cfrg-voprf-03, Internet Engineering Task Force, March 2019.
Work in Progress.

dV19. Henry de Valence. zkp: a toolkit for schnorr proofs,
2019. Available at: https://medium.com/@hdevalence/

zkp-a-toolkit-for-schnorr-proofs-6e381b4f0a31.

dVGT+20. Henry de Valence, Jack Grigg, George Tankersley, Filippo Valsorda, isis
lovecruft, and Mike Hamburg. The ristretto255 and decaf448 Groups.
Internet-Draft draft-irtf-cfrg-ristretto255-decaf448-00, Internet Engineer-
ing Task Force, October 2020. Work in Progress.

EFLL12. Yael Ejgenberg, Moriya Farbstein, Meital Levy, and Yehuda Lindell. Scapi:
The secure computation application programming interface. Cryptology
ePrint Archive, Report 2012/629, 2012. https://eprint.iacr.org/2012/
629.

FFS87. Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity.
In Alfred Aho, editor, 19th ACM STOC, pages 210–217. ACM Press, May
1987.

FHSS+20. Armando Faz-Hernández, Sam Scott, Nick Sullivan, Riad S. Wahby, and
Christopher A. Wood. Hashing to Elliptic Curves. Internet-Draft draft-
irtf-cfrg-hash-to-curve-10, Internet Engineering Task Force, October 2020.
Work in Progress.

Fis01. Marc Fischlin. Trapdoor Commitment Schemes and Their Applications.
PhD thesis, Johann Wolfgang Goethe-Universität, Germany, 2001.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018.

FKMV12. Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele
Venturi. On the non-malleability of the Fiat-Shamir transform. In
Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT 2012, vol-
ume 7668 of LNCS, pages 60–79. Springer, Heidelberg, December 2012.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985.

https://pkg.go.dev/go.dedis.ch/kyber
https://docs.zkproof.org/pages/standards/accepted-workshop2/proposal--zk-interop-jr1cs.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop2/proposal--zk-interop-jr1cs.pdf
https://medium.com/@hdevalence/zkp-a-toolkit-for-schnorr-proofs-6e381b4f0a31
https://medium.com/@hdevalence/zkp-a-toolkit-for-schnorr-proofs-6e381b4f0a31
https://eprint.iacr.org/2012/629
https://eprint.iacr.org/2012/629

28 S. Krenn and M. Orrù

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989.

Ham15. Mike Hamburg. Decaf: Eliminating cofactors through point compression.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 705–723. Springer, Heidelberg, August
2015.

Ham17. Mike Hamburg. The STROBE protocol framework. Cryptology ePrint
Archive, Report 2017/003, 2017. http://eprint.iacr.org/2017/003.

Hao17. Feng Hao. Schnorr Non-interactive Zero-Knowledge Proof. RFC 8235,
September 2017.

HGS01. Nick A Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital
signature schemes. Designs, Codes and Cryptography, 23(3):283–290, 2001.

HLPT20. Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague.
How not to prove your election outcome. In 2020 IEEE Symposium on
Security and Privacy, pages 644–660. IEEE Computer Society Press, May
2020.

HR11. Feng Hao and Peter Y. A. Ryan. Password authenticated key exchange
by juggling. In Bruce Christianson, James A. Malcolm, Vashek Matyas,
and Michael Roe, editors, Security Protocols XVI, pages 159–171, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

JKK14. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only
model. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 233–253. Springer, Heidelberg, De-
cember 2014.

JL17. Simon Josefsson and Ilari Liusvaara. Edwards-Curve Digital Signature
Algorithm (EdDSA). RFC 8032, January 2017.

JSI96. Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated ver-
ifier proofs and their applications. In Ueli M. Maurer, editor, EURO-
CRYPT’96, volume 1070 of LNCS, pages 143–154. Springer, Heidelberg,
May 1996.

KG20. Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized
schnorr threshold signatures. Cryptology ePrint Archive, Report 2020/852,
2020. https://eprint.iacr.org/2020/852.

KKR19. Benjamin Kuykendall, Hugo Krawczyk, and Tal Rabin. Cryptography for
#MeToo. PoPETs, 2019(3):409–429, July 2019.

KLI+18. Bogdan Kulynych, Wouter Lueks, Marios Isaakidis, George Danezis, and
Carmela Troncoso. Claimchain. Proceedings of the 2018 Workshop on
Privacy in the Electronic Society, Jan 2018.

Kre12. Stephan Krenn. Bringing Zero-Knolwedge Proofs of Knowledge to Practice.
PhD thesis, University of Fribourg, Switzerland, 2012.

LKF+19. Wouter Lueks, Bogdan Kulynych, Jules Fasquelle, Simon Le Bail-Collet,
and Carmela Troncoso. zksk. Proceedings of the 18th ACM Workshop on
Privacy in the Electronic Society - WPES’19, 2019.

LL97. Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete
log-based schemes using a prime order subgroup. In Burton S. Kaliski
Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 249–263. Springer,
Heidelberg, August 1997.

http://eprint.iacr.org/2017/003
https://eprint.iacr.org/2020/852

Proposal: Σ-protocols 29

Mau09. Ueli M. Maurer. Unifying zero-knowledge proofs of knowledge. In Bart
Preneel, editor, AFRICACRYPT 09, volume 5580 of LNCS, pages 272–286.
Springer, Heidelberg, June 2009.

Mau15. Ueli Maurer. Zero-knowledge proofs of knowledge for group homomor-
phisms. Des. Codes Cryptogr., 77(2-3):663–676, 2015.

MEK+10. Sarah Meiklejohn, C. Christopher Erway, Alptekin Küpçü, Theodora Hin-
kle, and Anna Lysyanskaya. ZKPDL: A language-based system for ef-
ficient zero-knowledge proofs and electronic cash. In USENIX Security
2010, pages 193–206. USENIX Association, August 2010.

MP15. Gregory Maxwell and Andrew Poelstra. Borromean Signatures,
2015. Available at https://raw.githubusercontent.com/Blockstream/

borromean_paper/master/borromean_draft_0.01_34241bb.pdfx.
NIS00. NIST. Digital signature standard. FIPS 186-2, 2000. Avail-

able at: https://csrc.nist.gov/csrc/media/publications/fips/186/

2/archive/2000-01-27/documents/fips186-2.pdf.
Noe15. Shen Noether. Ring signature confidential transactions for monero. IACR

Cryptology ePrint Archive, 2015:1098, 2015.
NRS20. Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round

schnorr multi-signatures. Cryptology ePrint Archive, Report 2020/1261,
2020. https://eprint.iacr.org/2020/1261.

NRSW20. Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN:
Schnorr multi-signatures with verifiably deterministic nonces. In Jay Lig-
atti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
20, pages 1717–1731. ACM Press, November 2020.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume
576 of LNCS, pages 129–140. Springer, Heidelberg, August 1992.

Por13. Thomas Pornin. Deterministic Usage of the Digital Signature Algorithm
(DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA). RFC
6979, August 2013.

PS97. David Pointcheval and Jacques Stern. New blind signatures equivalent
to factorization (extended abstract). In Richard Graveman, Philippe A.
Janson, Clifford Neuman, and Li Gong, editors, ACM CCS 97, pages 92–
99. ACM Press, April 1997.

PS00. David Pointcheval and Jacques Stern. Security arguments for digital sig-
natures and blind signatures. Journal of Cryptology, 13(3):361–396, June
2000.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–
252. Springer, Heidelberg, August 1990.

Sch91. Claus-Peter Schnorr. Efficient signature generation by smart cards. Jour-
nal of Cryptology, 4(3):161–174, January 1991.

SEC00. Certicom research, standards for efficient cryptography group (SECG) —
sec 1: Elliptic curve cryptography. http://www.secg.org/secg_docs.htm,
September 20, 2000. Version 1.0.

tt17. luigi1111 and fluffypony. Disclosure of a major bug in cryptonote based
currencies, 2017. Available at: https://www.getmonero.org/2017/05/17/
disclosure-of-a-major-bug-in-cryptonote-based-currencies.html.

Unr17. Dominique Unruh. Post-quantum security of Fiat-Shamir. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume
10624 of LNCS, pages 65–95. Springer, Heidelberg, December 2017.

https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdfx
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdfx
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://eprint.iacr.org/2020/1261
http://www.secg.org/secg_docs.htm
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html

30 S. Krenn and M. Orrù

vW96. Paul C. van Oorschot and Michael J. Wiener. On Diffie-Hellman key agree-
ment with short exponents. In Ueli M. Maurer, editor, EUROCRYPT’96,
volume 1070 of LNCS, pages 332–343. Springer, Heidelberg, May 1996.

WNR18. Pieter Wuille, Jonasonas Nick, and Tim Ruffing. Bip 0340, 2018. Avail-
able at: https://lists.linuxfoundation.org/pipermail/bitcoin-dev/
2018-July/016203.html.

XLA. XLAB. [n.d.] emmy - library for zero-knowledge proofs. Available at:
https://github.com/xlab-si/emmy. Last accessed: July 9, 2019.

ZKP19. ZKProof. ZKProof Community Reference v0.2. Technical report, 2019.
accessed on February 8, 2021.

Zuc00. Robert Zuccherato. Methods for Avoiding the ”Small-Subgroup” Attacks
on the Diffie-Hellman Key Agreement Method for S/MIME. RFC 2785,
March 2000.

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/016203.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/016203.html
https://github.com/xlab-si/emmy

	Proposal: -protocols
	Introduction
	Background and Motivation
	Notation and Terminology
	Formal Definitions
	-Protocols
	Proof Systems and Proofs of Knowledge

	Constructions for -Protocols
	Basic -Protocols in Prime-Order Groups
	Proving linear relations among witnesses.
	Examples

	Composition of -Protocols
	AND Composition.
	OR Composition.

	Achieving Non-Interactivity – The Fiat-Shamir Transform
	Batchable form
	Short form

	Achieving Concurrent Zero-Knowledge

	Security Considerations
	Instantiation
	Looking Ahead

