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Abstract. Succinct non-interactive arguments of knowledge (SNARKs) enable non-interactive efficient
verification of NP computations and admit short proofs. However, all current SNARK constructions
assume that the statements to be proven can be efficiently represented as either Boolean or arithmetic
circuits over finite fields. For most constructions, the choice of the prime field Fp is limited by the
existence of groups of matching order for which secure bilinear maps exist.

In this work we overcome such restrictions and enable verifying computations over rings. We construct
the first designated-verifier SNARK for statements which are represented as circuits over a broader kind
of commutative rings, namely those containing big enough exceptional sets. Exceptional sets consist
of elements such that their pairwise differences are invertible. Our contribution is threefold: We fist
introduce Quadratic Ring Programs (QRPs) as a characterization of NP where the arithmetic is over
a ring. Second, inspired by the framework in Gennaro, Gentry, Parno and Raykova (EUROCRYPT
2013), we design SNARKs over rings in a modular way. We generalize pre-existent assumptions em-
ployed in field-restricted SNARKs to encoding schemes over rings. As our encoding notion is generic
in the choice of the ring, it amenable to different settings. Finally, we propose two applications for
our SNARKs. In the first one, we instantiate our construction for the Galois Ring GR(2k, d), i.e. the
degree-d Galois extension of Z2k . This allows us to naturally prove statements about circuits over e.g.
Z264 , which closely matches real-life computer architectures such as standard CPUs. Our second ap-
plication is verifiable computation over encrypted data, specifically for evaluations of Ring-LWE-based
homomorphic encryption schemes.

1 Introduction

Proof systems have a rich history in cryptography and theory of computation [GMW86, For87,
BGG+90]. They are now a fundamental building block in numerous cryptographic constructions
such as public-key encryption [NY90], signature schemes [CS97], identification schemes [FFS87],
anonymous credentials [CL01], secure voting [CF85], secure multi-party computation [GMW87]
and, more recently, in cryptocurrencies such as ZCash [BCG+14].

Succinct proofs and verification. A large body of work has been devoted to the design and imple-
mentation of efficient proofs for a variety of applications. For various practical scenarios, some of
the crucial parameters are the amount of interaction, the proof size and how efficient is to prove or
verify statements.

When it comes to optimization of communication complexity in proof systems, it has been
shown that statistically-sound proofs are unlikely to allow for significant improvements in proof
size. It was shown in [Wee05] that when considering proof systems for NP, statistical soundness
requires the prover to communicate, roughly, as much information as the size of the witness. The
search for ways to beat this bound motivated the study of computationally sound proofs.

When restricting ourselves to computational soundness, proofs can be shorter than the length of
the witness [BCC88]. Computationally sound proofs are called argument systems. Many applications
also require succinct verification, where the verifier is able to check a nondeterministic polynomial-
time computation in time that is much shorter than the time required to run the computation



given the NP witness. Succinct proofs were considered by Kilian [Kil92], whose four-message con-
struction, based on probabilistically checkable proofs (PCP), was soon after made non-interactive
by Micali [Mic94] in the random oracle model. In the plain model, non-interactivity is achieved
by generating a CRS during a setup phase. There has been a series of works on constructing
(zero-knowledge) Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) [Gro10, Lip12,
BCCT12, BCI+13, GGPR13, PHGR13, Lip13, BCTV14, Gro16], which have very short proofs
that can be verified very quickly. All these constructions are based on non-falsifiable assump-
tions [Nao03], and the result of Gentry and Wichs [GW11] shows that in the plain model, it is un-
likely that SNARGs for general NP languages exist based on falsifiable assumptions. The approaches
of [GGPR13, PHGR13], which led to concretely efficient proofs were generalized in [BCI+13] under
the concept of Linear PCP (LPCP). LPCPs are a form of interactive proofs where security holds
under the assumption that the prover is restricted to compute only linear combinations of its inputs.
These proofs can then be transformed into SNARKs by means of an extractable linear-only encryp-
tion scheme, that is, an encryption scheme where a valid new ciphertext output by the adversary
is an affine combination of the encryptions that the adversary sees as input. Roughly, this “limited
malleability” of the encryption scheme, will force the prover to adhere to the above restriction.

1.1 SNARKs for Computation over Rings

Despite the progress we have seen in SNARKs, all existing contructions offer efficiency benefits
only for proving statements which can be efficiently represented as very particular forms of com-
putation. The works of [GGPR13, PHGR13, DFGK14] consider statements represented as circuit
computations, either as a Boolean circuit with AND, OR and NOT gates, or as an arithmetic
circuit with addition and multiplication over a field. The results of [BSCGT13, BCG+13] imply
that random-access machine computations can be efficiently reduced to circuit satisfiability. The
compiler of [BCG+13] gives an efficient reduction from the correctness of programs to arithmetic
circuit satisfiability for a prime field of suitable size. However, it is clearly interesting to consider
computations over other rings, like Z232 and Z264 . While this can be reduced to computation over
a field, emulating ring arithmetic in terms of finite field operations incurs a significant overhead
[KPS18]. Computation over these rings matches models of computation in real-life programming and
in computer architectures such as over CPU words. In addition, fixed and floating-point arithmetic
operations that frequently come up in real-world applications (for instance in approximate, rather
than exact computations such as in Machine Learning [CCKP19]), are more naturally expressed
in terms of operations over these rings. The work of LegoSNARK [CFQ19] partially mitigates the
efficiency issue of being tied to a unique, particular representation of computation. They achieve
their results by seeing a computation as naturally consisting of different components and proposing
a modular approach that uses the SNARK best suited for each component. Composition of proof
gadgets is orthogonal to our work, and by extending our construction to be commit-and prove, the
broader class of rings to which we can efficiently apply our SNARK adds yet another tool for works
in the spirit of LegoSNARK.

Applications. Verifiable computation (VC) allows a computationally weak client to outsource eval-
uation of a function to a powerful server. The client can then verify that the output returned by the
server is indeed correct while performing less work than what is necessary for computing the func-
tion itself. SNARKs immediately give a VC scheme, where the server performs the computation and
returns a SNARK proof together with the output. There has been significant progress in the recent
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years in constructing protocols and implementing systems for verifiable computation that leverage
SNARKs [BCG+13, BCTV14, BFR+13, CFH+15]. As has been noted in prior works [PHGR13],
the performance of existing constructions deteriorate for functionalities that have “bad” arithmetic
circuit representations.

In order to use existing SNARK schemes, one would have to translate the statement to a
statement about circuit satisfaction over a field. This translation is expected to incur some overhead,
and it is desirable that one can prove native computation. Most computer architectures, for instance,
Intel x64, support primitive data-types over rings. These architectures have specially designed
hardware to support fast and efficient arithmetic operations over rings. Matrix multiplication is
heavily optimized for the ring Z264 , and many native implementations compute over Z264 by default.
Proving ring computations could also lead to building anonymous credential schemes off of standard
signature schemes like RSA.

Efficiency considerations. The core problem behind efficiently simulating arithmetic over Z2k in
SNARKs in which the underlying field is Fp (for a 254-bit prime p) and k < 0.5dlog pe is that
of minimizing the amount of times one has to compute the modular reduction x mod 2k so that
correctness is preserved. This operation, which we denote as bit decomposition, can be implemented
for circuits over Fp at the cost of m + 1 multiplication gates, where m = dlog(xmax)e and xmax
denotes the maximum value x might attain [KPS18], given its position on the circuit and any known
bounds on the inputs. Inputs provided in zero-knowledge can, themselves, be ensured to be k-bit
numbers at the cost of k + 1 multiplication gates. Whereas placing “reduction mod 2k” gates in a
circuit could be phrased as an optimization problem, practitioners do not find it efficiently solvable
in practice and often resort to heuristics [KPS18].

In other applications, there is the somewhat converse problem that the field Fp is not big enough
to represent values in a single circuit wire. This happens, for example, if one wants to compute
zkSNARKs where the statements are related to some RSA ring [DFKP16]. As each ring element
then corresponds to m “words”, each of them on an independent circuit wire, multiplying ring
elements requires e.g. O(m1.58) multiplication gates, applying Karatsuba’s method.

1.2 Our Contributions

Our goal is to construct a (zk)-SNARK for ring computations, thus bringing the theory of proof
systems closer to practice. Along the way, we tackle new technical problems, introduce useful
building blocks, such as Quadratic Ring Programs (QRPs) and secure encodings over rings. Finally,
we provide two applications for our SNARKs based on the QRP characterization: Privacy-preserving
verifiable computation and SNARKs over Z2k .

Quadratic Programs over Rings. Gennaro et al. [GGPR13] introduced the notion of Quadratic
Span Programs (QSP) and Quadratic Arithmetic Programs (QAP) which can be used to compactly
encode computations. They show how to convert any Boolean/arithmetic circuit into a QSP/QAP.

In this spirit, we define an analogue of a Quadratic Arithmetic Program (QAP) for arith-
metic circuits over rings, called Quadratic Ring Program (QRP). QRPs “naturally” characterize
computation on the underlying ring, which allows us to construct a SNARK without having to
emulate the ring arithmetic inside a field, as would be required if we were to use a QAP. Fur-
thermore, we give an explicit way to construct QRPs for rings containing big enough exceptional
sets [BCPS18, ACD+19, DLS20], i.e. sets of elements such that their pairwise differences are in-
vertible. We believe the notion of a QRP could be of independent interest as a generalization of
existing quadratic programs.
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Designated-verifier (zk)-SNARK for ring computation. The QRP characterization allows
a test for satisfiability of an arithmetic circuit over a ring. To construct a succinct proof, we follow
the blueprint of [GGPR13, PHGR13], where the QRP test is performed in a probabilistic way.
The setup produces a structured reference string that consists of linearly homomorphic encodings,
on top of which the prover is expected to compute using the (secret) witness. Under knowledge-
type assumptions that we extend to encodings over rings, we prove security of our designated-
verifier SNARK. In particular, we prove our construction secure under variants of the generalized
q-PDH and d-PKE assumptions extended to encodings over rings, carefully addressing the technical
challenges that arise in the new ring setting. These generalized assumptions were already stated for
encodings over fields by prior works as [GGPR13, GMNO18] and gained some confidence as a base
to build post-quantum SNARKs. Similar to the counterpart of assumptions in the field case, where
for instance, the existence of secure bilinear groups limits the choice of the finite fields, our ring
assumptions are also cautiously made and assumed to be plausible when care is taken about the
particular choice of ring and encoding scheme. In Appendix C we show that if an encryption scheme
is assumed to be a linear-only extractable encoding, then that encoding satisfies the generalized
q-PDH and q-PKE assumptions over rings. Therefore, if our assumptions turn out to not hold for
a non-trivial choice of ring and encoding, that would lead to an efficient encryption scheme (the
encoding) over that ring which allows for more than just linear homomorphism, potentially towards
a new fully/somewhat homomorphic encryption scheme.

On more efficient constructions. We take a small detour to discuss our choice of [GGPR13,
PHGR13] as our reference SNARK construction. While there has been a lot of progress since [GGPR13]
with contructions that offer more properties and better efficiency, these two papers constitute a
crucial milestone in the SNARK landscape, upon which other constructions have been built. As
our work is the first one that builds SNARKs over general commutative rings while requiring only
black-box access to the ring’s operations, we consider generalizing the foundational work as a first
step and then focus on further improving their efficiency. We hope that our work sets the stage
for e.g. future SNARKs over rings with very small proofs (such as [Gro16]) or SNARKs over rings
with an updatable CRS, both of which we discuss below.

The state-of-the art SNARK construction of Groth16 [Gro16] is very efficient and has a proof
size of three group elements. The construction is, however, in the idealized Generic Group Model
(GGM). Translating the ideas behind the construction to general rings would require idealized
models over rings. We can in fact construct a SNARK along the lines of the construction of Groth16
and prove security assuming that the encoding satisfies “linear only extractability”, which roughly
means that the only operations that can be performed over the encodings are affine. While a similar
assumption over fields is plausible for an encoding based on exponentiation in a bilinear group (in
the GGM), this turns out to be a strong assumption for encodings over rings. Since we do not know
of candidate instantiations, we give the Groth-16 like construction in Appendix I. Formalising a
suitable idealized model for rings and exploring candidate encodings for linear-only assumptions is
an interesting avenue for research.

While there has been recent progress on reducing the degree of trust in preprocessing SNARKs
by constructing ”updatable CRS” SNARKs [GKM+18, MBKM19, CHM+20], QAP-based SNARKs
give the best concrete efficiency in terms of proof size. Our characterization of ring computation as
a QRP and subsequent SNARK construction inherits the need for a trusted CRS generation. This
allows us to obtain better proof sizes. Moreover, in the designated-verifier setting, a trusted CRS
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is more acceptable in practice, since if we do not need ZK, we can simply have the verifier run the
setup and send the CRS to the prover, and reuse the CRS to prove many statements.

Privacy-preserving verifiable computation. We show how our new (zk)-SNARK can be in-
stantiated with polynomial rings in order to obtain a Verifiable Computation (VC) scheme with
input and output privacy. While verifiable computation is a well-studied area, the problem of en-
suring both correctness and privacy of the computation performed by untrusted machines remains
one of the main concerns in this setting. The works solving this problem are far from achieving
practical efficiency.

A natural generic construction for such schemes would be to consider a straightforward combi-
nation of SNARKs and FHE, where FHE allows computation over encrypted data and a SNARK is
used to verify the integrity of the results of the computation. However, such a generic construction
results in a large overhead even when used with the most performant state-of-the-art SNARKs for
arithmetic circuits over finite fields to prove FHE evaluations. This is due to the limitation of having
to use QAP/SSP-based SNARKs for proving computations over ciphertexts which are not natu-
rally expressed as field elements. Therefore, such solutions do not scale well when the evaluation
in FHE has to be emulated by arithmetic circuits over fields, and the resulting privacy-preserving
VC schemes have very poor efficiency.

1.3 Comparison with Related Work

The results of [BISW17] give constructions of a designated verifier Succinct Non-interactive AR-
Gument (SNARG) based on vector encryption over rings under the assumption that the encryp-
tion scheme satisfies linear targeted malleability. The subsequent work in [BISW18] constructs a
SNARG with quasi-optimal prover complexity. Even though these works use an encoding scheme
over a ring to compile the information theoretic object, the statement to be proven is represented
as Boolean/arithmetic circuit satisfiability over a field, and the computation is still over Fp. The
underlying linear PCP is essentially a QSP/QAP. Crucially, in these works the statement to be
proved is an arithmetic circuit over a field, whereas our motivation is proving statements that are
represented over rings like Z264 or a polynomial ring Rq = Zq[Y ]/(f(Y )) directly.

In [KPP+14], Kosba et al. generalize the notion of Quadratic Arithmetic Programs over a
field F to that of Quadratic Polynomial Programs (QPPs), which compute circuits whose wires
carry values in the ring F[X]. These polynomial circuits, where the addition and multiplication
operations are over F[X], are introduced with the goal of representing (multi-)sets S of elements
over F. While the construction in [KPP+14] is limited to rings of polynomials over the same fields
for which SNARKs à la [PHGR13] are secure, our work allows to build SNARKs for any ring R
satisfying the property that it has a large subset such that the difference of the elements in the
subset are invertible. Furthermore, our definition of QRP also recovers the QPP formulation as an
instantiation of the underlying ring R, which we show in Appendix E.

Privacy-Preserving Verifiable Computation. To our knowledge, there are four main works that
consider privacy in the context of VC. The first one is the seminal paper of Gennaro et al. [GGP10]
who introduced the notion of non-interactive verifiable computation and builds it from garbled
circuits and FHE. The second work is that of Goldwasser et al. [GKP+13] shows how to use a
succinct single-key functional encryption scheme in order to build a VC protocol that preserves
the privacy of the inputs (but not of the outputs). Both of these solutions [GGP10, GKP+13] are,
however not very satisfactory in terms of efficiency.
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A third work that considered the problem of ensuring correctness of privacy-preserving com-
putation is the one by Fiore et al. [FGP14], who proposed using a VC in order to prove that the
homomorphic evaluation of FHE ciphertexts has been done correctly. [FGP14] solution is inher-
ently bound to computations of quadratic functions because the VC scheme is instantiated using
homomorphic MACs.

To overcome this, the most recent work in this area by Fiore et al. [FNP20] proposes a new
protocol for verifiable computation on encrypted data that supports homomorphic computations
of multiplicative depth larger than 1. Towards their VC scheme, [FNP20] build a new SNARK
that can efficiently handle computations of arithmetic circuits over a quotient polynomial ring
Rq = Zq[Y ]/(f(Y )) for a prime number q in which the prover’s costs have a minimal dependence
on the degree d of f(Y ). Although this seems to fit the arithmetic structure for Ring-LWE schemes,
it imposes many limitations due to the restriction to rings Rq where q is not only a prime, but it
also has to match secure and efficient pairing constructions for some underlying SNARK over Fq.

Another significant impact on the performance present in the work of [FNP20] is on the
prover effort to evaluate the circuit C over ciphertexts. In their VC scheme, a prover performs
the homomorphic evaluation of the Ring-LWE HE without reduction modulo f(Y ), where f(Y ) is
the quotient polynomial that defines Rq = Zq[Y ]/(f(Y )). Instead, it computes the circuit C over
Zq[Y ], processing polynomials of high degrees, namely the initial degree d grows linearly with the
multiplicative depth of the circuit. This has a significant overhead that adds to the delegated task
itself.

We take a step further and propose a better VC scheme with privacy that follows the same
blueprint: combining homomorphic encryption and a SNARK. The latter is, in turn, based on
encoding schemes that take as input ciphertexts of a Ring-LWE-based HE. The use of our generic
SNARK for computation over rings allows for better choices of group order q which improves over
the approach in [FNP20].

Moreover, in our construction, the prover is not asked to come up with a different witness
than the one obtained via the delegation task it completed. Our SNARK allows then for speed
up through classical efficiency optimisations in Rq such as Number-Theoretic Transform (NTT).
Also, we provide tools to enable the application of more advanced noise reduction techniques for
the Ring-LWE scheme such as modulo switching.

Furthermore, our scheme is in the plain model, while [FNP20] requires a random oracle. We
give a detailed comparison of our application to privacy-preserving VC with the scheme of [FNP20]
in Section 7.3.

In a recent work of [BCFK20], the authors propose a new solution to verifiable computation
on encrypted data. Like [FNP20], the work of [BCFK20] uses the paradigm of combining VC and
HE. However, in contrast to [FNP20] that requires the HE scheme to work with very specific
parameters, the solution of [BCFK20] allows a flexible choice of HE parameters. The key idea of
the protocol in [BCFK20] is a new homomorphic hash function for Galois rings. While we treat
verifiable computation on encrypted data in our work too, we note that our work is more general – we
construct (zk)SNARKs for ring computations. We achieve privacy-preserving verifiable computation
as an application of our SNARK over suitable rings. In addition, the instantiation given in [BCFK20]
uses the GKR protocol that admits class of log-space uniform circuits. Our QRP abstraction yields
SNARKs for general circuit computations, albeit while making knowledge assumptions similar to
analogous SNARKs for fields.
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2 Preliminaries

Notation. We use κ to denote the security parameter. A function is said to be negligible if for all
large enough values of the input, it is smaller than the inverse of any polynomial. We use negl to
denote a negligible function. We use PPT to denote probabilistic polyonomial time machines. If A
is a randomized algorithm, we use y ← A(x) to denote that y is the output of A on x. We write
x← X to mean sampling a value x uniformly from the set X . By writing A‖χA(σ) we denote the
execution of A followed by the execution of χA on the same input σ and with the same random
coins. The output of the two are separated by a semicolon. Whenever we talk about a ring R, unless
otherwise specified, we always mean a commutative finite ring with identity. We denote the units
of such a ring as R∗. Finally, we write Zpk to denote the ring of integers modulo pk.

Definition 1 (SNARK). A triple of polynomial time algorithms (Setup,Prove,Verify) is a SNARG
for an NP language L with corresponding relation R, if the following properties are satisfied.

1. Completeness. For all (x,w) ∈ R, the following holds:

Pr

(
Verify(vk, x, π) = 1 :

(σ, vk)← Setup(1κ)
π ← Prove(σ, x, w)

)
= 1

2. Knowledge Soundness . For any PPT adversary A, there exists a PPT algorithm χA such that
the following probability is negligible in κ:

Pr

(
Verify(vk, x̃, π̃) = 1
∧R(x̃, w′) = 0

:
(σ, vk)← Setup(1κ)

((x̃, π̃);w′)← A‖χA(σ)

)
3. Succinctness. For any x and w, the length of the proof π is given by |π| = poly(κ) · polylog(|x|+
|w|).

Non-black-box Extraction. The notion of Knowledge Soundness requires the existence of an extrac-
tor that can compute a witness whenever the adversarial prover produces a valid argument. The
extractor we defined above is non-black-box and gets full access to the adversary’s state, including
any random coins.

Zero-Knowledge. An SNARK is zero-knowledge if it does not leak any information besides the
truth of the statement. The formal definition (Def. 6) can be found in Appendix A.

Public vs Designated verifiability. In a publicly verifiable SNARK, there is no private verification
information, i.e. vk = ∅. A SNARK is designated verifiable if the proof can be verified only by a
party knowing vk. Note that in the designated-verifier case, the verifier’s decision bit on a proof
potentially leaks some information about vk. Thus, the same common reference string cannot be
reused for multiple proofs as in publicly-verifiable case. This was addressed in prior works in veri-
fiable computation [GGP10, CKV10], by either keeping the decision bit secret from the prover, or
running a fresh setup every time a proof fails verification. Note that any sound scheme can tolerate
O(log κ) bits of leakage, and assuming that the decision bit leaks only a constant number of bits of
information, one would only need to run a new setup after logarithmically-many proof rejections.

Strong Soundness. Multi-statement designated-verifier SNARKs are requiring soundness to hold
even against a prover that makes adaptive queries to a proof verification oracle.

7



2.1 Background in Ring Theory

We now turn to recall some useful results from ring theory. Most of the results here provided are
standard. While some of the known results for fields and euclidean domains (such as Z) carry over
to the more general rings we deal with, others do not. For example, one has to be careful about the
fact that the rings we consider contain zero divisors, i.e. d ∈ R \ {0} for which ∃ q ∈ R \ {0} such
that d · q = 0.

Lemma 1. Let R be a finite ring. Then all non-zero elements of R are either a unit or a zero
divisor.

We recall that an ideal of a ring R is an additive subgroup I ⊆ R such that r · x ∈ I for any
r ∈ R, x ∈ I. Through the paper, (x) will denote the ideal generated by x ∈ R.

Theorem 1. Let R be a finite commutative ring with identity and let Z(R) denote the set of all
its zero divisors. Then the following are equivalent:

1. Z(R) is an ideal.

2. Z(R) is a maximal ideal.

3. R is local.

4. Every x ∈ Z(R) is nilpotent.

Theorem 2 (Chinese Remainder Theorem). Let I1, . . . , Im be m pairwise co-prime1 ideals of
R, i.e. ∀i 6= j, Ii + Ij = R. Denote I = I1 · · · Im. Then the following map is a ring isomorphism:

R/I → R/I1 × · · · ×R/Im
r mod I 7→ (r mod I1, . . . , r mod Im)

Exceptional sets. Elements which satisfy that their pairwise differences are invertible will be
fundamental in our constructions. These have received different names in the literature: ‘Condition
(F)’ sets in [BCPS18], ‘exceptional sequences’ in [ACD+19] and ‘exceptional sets’ in [DLS20]. We
will stick with the latter denomination.

Definition 2. Let A = {a1, . . . , an} ⊂ R. We say that A is an exceptional set if ∀i 6= j, ai−aj ∈ R∗.
We define the Lenstra constant of R to be the size of the biggest exceptional set in R.

We will need the following generalization of the Schwartz-Zippel lemma.

Lemma 2. [Generalized Schwartz-Zippel Lemma [BCPS18]] Let f : Rn → R be an n-variate non-
zero polynomial. Let A ⊆ R be a finite exceptional set. Let deg(f) denote the total degree of f .
Then:

Pr
a←An

[f(a) = 0] ≤ deg(f)

|A|
1 Such ideals are also denoted co-maximal by some authors.
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Interpolation. Lagrange interpolation for sets of points (xi, yi) ∈ R2 can be computed, as long as
all the xi are part of the same exceptional set A ⊂ R. This follows from either looking at the
definition of Lagrange basis polynomials or, more formally, from the Chinese Remainder Theorem
(Theorem 2). As an intuition of the latter approach, the ideals (x− xi) are co-prime, so there is a
one-to-one correspondence between any polynomial p(x) ∈ R[x]/I, where I =

∏d+1
i=1 (x − xi), and

y1 = p(x1), . . . , yd+1 = p(xd+1). In other words, any p(x) ∈ R[x] of degree d is uniquely determined
by its evaluation at d points of an exceptional set. For more details about the CRT argument, see
e.g. [ACD+19].

Galois Rings. Galois Rings are the generalization of Galois Fields to the ring case. Informally, a
Galois Ring relates to integers modulo pk in the same way a Galois Field relates to integers modulo
a prime p. In the following, we provide a high level overview of their properties and arithmetic. For
a more detailed introduction to Galois Rings, see [Wan03].

Definition 3. A Galois Ring is a ring of the form R = Zpk [X]/(h(X)), where p is a prime, k a
positive integer and h(X) ∈ Zpk [X] a monic polynomial of degree d ≥ 1 such that its reduction
modulo p is an irreducible polynomial in Fp[X].

Given a base ring Zpk , there is a unique degree d Galois extension of Zpk , which is precisely
the Galois Ring provided on the previous definition. Hence, we shall denote such Galois Ring as
GR(pk, d). Note that Galois Rings reconcile the study of finite fields Fpd = GR(p, d) and finite rings

of the form Zpk = GR(pk, 1).

Every Galois Ring R = GR(pk, d) is a local ring and its unique maximal ideal is (p). Hence, by
Theorem 1, all the zero divisors of R are furthermore nilpotent, and they constitute the maximal
ideal (p). Furthermore, we have that R/(p) ∼= Fpd , and thus a canonical homomorphism π : R→ Fpd
which can be computed by ‘reducing modulo p’.

Proposition 1 ([ACD+19]). The Lenstra constant of R = GR(pk, d) is pd.

In this work, we will be particularly interested in Galois Rings of the form R = GR(2k, d), i.e.
of characteristic 2k, maximal ideal (2) and such that R/(2) ∼= F2d . Whenever we need to explicitly
represent elements a ∈ R, we will do so as it follows from Definition 3. In that case, we will say
that a is given in its additive representation, which consists of the residue classes

a ≡ a0 + a1 ·X + . . .+ ad−1 ·Xd−1 mod h(X), ai ∈ Z2k . (1)

3 Quadratic Programs over Commutative Rings

We extend Quadratic Arithmetic Programs (QAPs) from working over fields, as originally intro-
duced in [GGPR13], to also cover commutative rings with identity. This gives us a characterization
for the satisfiability of arithmetic circuits over such rings. Throughout this section, whenever we
talk about rings, we restrict ourselves to commutative rings with identity.

Definition 4 (Quadratic Ring Programs (QRP)). A Quadratic Ring Program (QRP) Q over
a ring R consists of three sets of polynomials, V = {vk(x) : k ∈ [0,m]},W = {wk(x) : k ∈
[0,m]},Y = {yk(x) : k ∈ [0,m]} and a target polynomial t(x), all in R[X]. Let C be an arithmetic
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circuit over R with n inputs and n′ outputs. We say that Q is a QRP that computes C if the
following holds:

a1, . . . , an, am−n′+1, . . . am ∈ Rn+n
′

is a valid assignment to the input/output variables of C if
and only if there exist an+1, . . . , am−n′ ∈ Rm−n−n

′
such that:

t(x) divides p(x),

where p(x) = V (x) ·W (x)− Y (x), V (x) =
(
v0(x) +

∑m
k=1 ak · vk(x)

)
, W (x) =

(
w0(x) +

∑m
k=1 ak ·

wk(x)
)

and Y (x) =
(
y0(x) +

∑m
k=1 ak · yk(x)

)
.

We define the size and degree of Q to be m and deg(t(x)) respectively. Given polynomials
V (x),W (x), Y (x) ∈ R[X] defined as above and corresponding to a valid assignment of the in-
put/output wires, we will call them a QRP solution.

In Appendix B, we show how to build a QRP for a multiplication sub-circuit, and how to
compose QRPs to obtain a QRP for any arithmetic circuit. The results are similar in spirit to
GGPR [GGPR13], and we omit them from the main body due to space constraints. As in previous
works, we can also construct a QRP directly for the given circuit without relying on composition.
An intuitive explanation follows in the next paragraph.

Let C be a circuit whose gates have fan-in two and fan-out one. To build a QRP, we will make use
of an exceptional set A as follows. We will pick elements rg ∈ A for each multiplication gate g ∈ C
and define the target polynomial as t(x) =

∏
g∈C(x− rg). The vk(x), wk(x) and yk(x) polynomials

can be computed by interpolating over the same rg’s (which can be done for exceptional sets) in
the same way one proceeds in the QAP case [GGPR13, PHGR13]. Intuitively, QRP composition
when the roots of t(x) are taken from the same exceptional set A follows from the same fact
polynomial interpolation does: The ideals (x − rg) are co-prime and we can thus apply the CRT.
R[X]/(t(X)) ' R× . . .×R, and we have a one-to-one correspondence between p(x) mod t(x) and
p(r1), . . . , p(rdeg(t(x))).

4 Secure Encoding Schemes over Rings

To construct a SNARK, we follow the framework in [GGPR13]. The QRP polynomials are rep-
resented by encodings of the polynomials evaluated at a secret point, and the encoding used is
additively homomorphic in the ring of computation. We now define these encodings and their
properties.

Definition 5 (Encoding scheme). An encoding scheme Encode over a ring R consists of a tuple
of algorithms (Gen,E).

– (pk, sk) ← Gen(1κ), a key generation algorithm that takes as input a security parameter and
outputs a secret key sk, and public information pk.

– s ← E(a), a probabilistic encoding algorithm mapping a ring element a ∈ R to an encoding s
in encoding space S such that the sets {{E(a)} : a ∈ R} partition S, where {E(a)} is the set
of encodings of a. Depending on the encoding algorithm, E could require the secret state sk. To
ease notation, we will omit this additional argument.

An encoding scheme has to satisfy the following properties:

– `-Linearly homomorphic: There is an efficient algorithm Eval that on input public information
pk, encodings E(a1), . . .E(a`) and coefficients c1, . . . , c` ∈ R` computes the encoding E(

∑`
i=1 ci ·

ai).
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– Quadratic root detection: There exists an algorithm that given secret key sk, (E(a1), . . .E(ad)),
and a quadratic polynomial Q(x1, . . . , xt) ∈ R[X1, . . . , Xt], can distinguish whether Q(a1, . . . , at) =
0.

– Image verification: There exists an efficient algorithm that given sk, and an element c, can
detect if c is a valid encoding of some element in R.

– Correctness: We say that the encoding scheme is (statistically) correct if all valid encodings are
decoded successfully (with overwhelming probability).

4.1 Secure Encodings

While the definition of encoding above can be satisfied by, for instance, the identity function, we will
only be interested in secure encodings, i.e. those which satisfy certain cryptographic assumptions.
In the following, A (resp. A∗) denotes an exceptional set of a commutative ring with identity R
(resp. R∗, the units of that ring).

Assumptions. We rely on computational assumptions about the encoding scheme. These have been
previously used in the discrete-logarithm group setting, and here we generalize them to encodings
over rings. We also show (in Appendix C) how our assumptions follow from the more intuitive, but
stronger, notion of linear-only extractable encodings from [BCI+13].

We start by giving a generalized version of the q-PDH problem used in [GGPR13]. This as-
sumption has two differences with respect to the original one. First of all, the adversary is able to
win the game as long as it outputs a pair (a, y) such that a 6= 0 and y ∈ {E(a · sq+1)}. In the field
case, this is trivially equivalent to the original q-PDH assumption, as a−1 · E(a · sq+1) = E(sq+1).
Nevertheless, in the ring case, we need to deal with elements a ∈ R which might be zero divisors.
Second, in order to have the assumption work for any given q, we need to ensure that s2q 6= 0.
Due to this and additional security reasons, we restrict s to be a unit. Furthermore, we need s to
be part of a big enough exceptional set, so that we can prove the soundness of our SNARKs by
invoking the Generalized Schwartz-Zippel lemma.

Assumption 1 (Generalized q-PDH) The generalized q-power Diffie-Hellman assumption holds
for an encoding scheme Encode if, for every non-uniform PPT algorithm A, the following probability
is less or equal than 1

|A∗| + negl(κ):

Pr

a 6= 0 ∧ y ∈ {E(a · sq+1)} :

(pk, sk)← Gen(1κ),
s← A∗,

σ = (pk,E(1),E(s), . . . ,E(sq),E(sq+2),E(s2q)),
(a, y)← A(σ)

 .

Note that we linked our generalization of q-PDH to the size of the exceptional set A∗. Usually, we
will consider A∗ to be of exponential size in the security parameter, so that the previous probability
is just negligible in the security parameter. Nevertheless, for the purpose of parallel soundness
amplification techniques, in some cases it will be useful to consider even exceptional sets of constant
size.

We also need a q-power knowledge assumption, which is both augmented to handle the desig-
nated verifier setting and generalized to encodings over rings.
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Assumption 2 (Generalized Augmented q-PKE) The generalized augmented q-power knowl-
edge of encoding assumption holds for an encoding scheme Encode and for the class Z of “benign”
auxiliary input generators if, for every non-uniform PPT auxiliary input generator Z ∈ Z and
for all non-uniform PPT algorithm A there exists a non-uniform PPT extractor χA such that the
following probability is negligible in the security parameter:

Pr

 ĉ− αc = 0
∧

c 6=
∑q

i=0 ais
i

:

(pk, sk)← Gen(1κ), α← R∗, s← A∗,
σ = (pk,E(1),E(s), . . . ,E(sq),E(α),E(αs), . . . ,E(αsq)),

z ← Z(σ)
(E(c),E(ĉ); a0, . . . , aq)← (A||χA)(σ, z)

 .

In the above, (x; y) ← (A||χA)(σ, z) denotes that on input (σ, z), A outputs x, and χA given the
same input (σ, z), and A’s random tape, outputs y. When we assume that Z is benign, we mean
that the auxiliary information z is generated with a dependency on sk, s and α that is limited to
the extent that it can be generated efficiently from σ.

5 Designated Verifier SNARK

Besides the security assumptions we introduced in the previous section, our designated verifier
SNARK construction will mostly rely on the two following technical lemmas. The first one will be
useful to define the concrete soundness error of our construction, while the second one is an analogue
of Lemma 10 in GGPR [GGPR13]. Due to space constraints, we prove them in Appendix D.

Lemma 3. Given an exceptional set of size n in R, we can construct another exceptional set
A = {0, a1, . . . , an−1 : ai ∈ R∗}. When an exceptional set has the latter form, we say it is given in
its canonical form.

Lemma 4. Let R[x]≤e denote the polynomials in R[x] of degree at most e. Let R[x]¬(e) denote
polynomials over R[x] that have a zero coefficient for xe. Let A∗ ⊂ R∗ be an exceptional set. We
define A∗[x]≤e, A

∗[x]¬(e) analogously. Given a set U = {ui(x)} ⊂ R[x]≤e such that |U| = m,
let span(U) denote the set of polynomials that can be generated as R-linear combinations of the
polynomials in U . Let a(x) ∈ A∗[x]≤e+1 be generated uniformly at random subject to the constraint
that {a(x) · ui(x) : ui(x) ∈ U} ⊂ R[x]¬(e+1). Let s← A∗. Then, if e > m− 1, for all algorithms A,

Pr

 u(x) ∈ R[x]≤e ∧
u(x) /∈ span(U) ∧

a(x) · u(x) ∈ R[x]¬(e+1)
: u(x)← A(U , s, a(s))

 ≤ 1

|A∗|
.

5.1 Construction from QRP

Let C be an arithmetic circuit over R, with m wires and d multiplication gates. Let A be an
exceptional set given in canonical form and AQ = {0, a1, . . . , ad−1} ⊂ A. Using AQ, define the
QRP Q = (t(x), {vk(x), wk(x), yk(x)}mk=0) which computes C. Let A∗ = A\AQ, which satisfies that
A∗ ⊆ R∗, since A is in canonical form.

We denote by Iio = 1, 2, . . . ` the indices corresponding to the public input and public output
values of the circuit wires and by Imid = `+ 1, . . .m, the wire indices corresponding to non-input,
non-output intermediate values. We construct a SNARK scheme Rinocchio = (Setup,Prove,Verify)
for ring arithmetic as described in Figure 1.
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Setup(1κ,R)

(pk, sk)← Gen(1κ), s← A∗, rv, rw ← R∗, ry = rv · rw
α, αv, αw, αy ← R∗, β ← R \ {0}

crs =
(
{E(si)}di=0, {E(rvvk(s))}k∈Imid , {E(rwwk(s))}k∈Imid , {E(ryyk(s))}k∈Imid ,

{E(αrvvk(s))}k∈Imid , {E(αrwwk(s))}k∈Imid , {E(αryyk(s))}k∈Imid ,

{E(αsi)}di=0, {E(β(rvvk(s) + rwwk(s) + ryyk(s))}k∈Imid , pk
)

(2)

vk = (sk, crs, s, α, β, rv, rw, ry)

Prove(crs, u, w)

u = (a1, . . . , a`), a0 = 1,
w = (a`+1, . . . , am)

v(x) =
∑m
k=0 akvk(x)

vmid(x) =
∑
k∈Imid

akvk(x)

w(x) =
∑m
k=0 akwk(x)

wmid(x) =
∑
k∈Imid

akwk(x)

y(x) =
∑m
k=0 akyk(x)

ymid(x) =
∑
k∈Imid

akyk(x)

h(x) =
v(x)w(x)− y(x)

t(x)

f = rvvmid(s) + rwwmid(s) + ryymid(s)

A = E(rvvmid(s)), Â = E(rvαvvmid(s)),

B = E(rwwmid(s)), B̂ = E(rwαwwmid(s)),

C = E(ryymid(s)), Ĉ = E(ryαyymid(s)),

D = E(h(s)), D̂ = E(αh(s)), F = E(βf).

return π = (A, Â,B, B̂, C, Ĉ,D, D̂, F )

Verify(vk, u, π)

π = (A, Â,B, B̂, C, Ĉ,D, D̂, F ),
A = E(rvVmid), Â = E(rvV̂mid),
B = E(rwWmid), B̂ = E(rwŴmid),
C = E(ryYmid), Ĉ = E(ryŶmid),
D = E(H), D̂ = E(Ĥ), F = E(L)
vio(x) =

∑`
i=0 aivi(x)

wio(x) =
∑`
i=0 aiwi(x)

yio(x) =
∑`
i=0 aiyi(x)

Lspan = rvVmid + rwWmid + ryYmid
P = (vio(s) +Vmid) · (wio(s) +Wmid)− −(yio(s) +
Ymid)

Check: V̂mid = αVmid,

Ŵmid = αWmid,

Ŷmid = αYmid,

Ĥ = αH (3)

L = βLspan (4)

P = H · t(s) (5)

Fig. 1. The Rinocchio scheme for (zk-)SNARKs over a ring R.

Zero-knowledge. We can make our construction zero-knowledge by randomizing the elements in
the proof π such that the checks verify and the proof is statistically indistinguishable from random
encodings. The idea is for the prover to add random multiples of t(x) to the proof terms so that we
can define a simulator that “fakes” the proof elements from completely random values. Specifically,
the prover chooses random δv, δw, δy ← R, and adds δvt(s) inside the encoding to vmid(s); δwt(s)
to wmid(s); and δyt(s) to ymid(s). It is easy to see that the modified value of p(x) remains divisible
by t(x).

The following terms should be added to crs: E(rvt(s)),E(rwt(s)), E(ryt(s)), E(αvrvt(s)), E(αwrwt(s)),
E(αyryt(s), E(rvβt(s)), E(rwβt(s)), E(ryβt(s)). The prover can now compute the new values in π
using the terms in the crs, and the verification proceeds as before.

Remark 1. Note that our construction has a proof size of nine elements, as opposed to eight ele-
ments in Pinocchio [PHGR13]. This saving in Pinocchio is a result of removing the repeated (with
scalar α) encoding of the quotient polynomial h(x). We remark that this means that in the proof
of security, one cannot invoke PKE to extract the quotient polynomial. Indeed, Pinocchio does not
extract the polynomial explicitly and, for the security proof to go through, they require multipli-
cation of encoded values (multiplication in the exponent). This relies on more than just quadratic
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root detection from the encoding, it needs one quadratic computation in the reduction. While expo-
nentiation admits this multiplication via pairings, we do not make the assumption that an encoding
scheme in the designated verifier setting allows this in general. Therefore, we fall back on including
an additional proof element, and additional CRS elements to enable this computation.

Remark 2. Another aspect of our construction that could look surprising to the reader is the def-
inition of A∗: Why do we not include the elements in AQ used to define the QRP? As previously
discussed, we do this in order to precisely define the soundness of our construction. In some cases,
as we will discuss in Section 6.3, it could be useful to use parallel repetition strategies for sound-
ness amplification. Previous works in the field setting, using pairings, did not need to make such
a concrete analysis, since if circuits are assumed to be of polynomial size in the security parame-
ter, the probability that a randomly sampled s ← F would be precisely one of the points used to
define the QRP would be negligible, because F has exponential size in the security parameter. In
all rigour, nevertheless, the concrete soundness error of those constructions is also bounded by the
size of F minus the size of the QRP2. We prefer this concrete analysis even when rings might have
exceptional sets of exponential size in the security parameter.

5.2 Security proof

We are now ready to prove that Rinocchio satisfies the properties of a SNARK as stated in Definition
1. We remark that we do not prove strong soundness, which demands that soundness holds even
when the prover has access to the verification oracle. While some designated-verifier schemes are
provably strongly sound, the reduction requires the d-PKEQ assumption (see Assumption 3 in
Appendix C) on the encoding scheme to hold. For the sake of keeping Rinocchio as general as
possible in the choice of rings and encodings, we do not make that assumption, but our result could
be adapted to that case.

Theorem 3. Let R be commutative ring with identity with an exceptional subset A, and d be an
upper bound on the degree of the QRP. Assuming that the generalized augmented d-PKE and the
generalized q-PDH assumptions hold for the encoding scheme Encode over R (and A∗) for q = 4d+4,
the protocol Rinocchio described above is a SNARK as per Definition 1, with soundness error 1/|A∗|.

Security Proof. In the following, we provide intuition and an informal sketch of the security
reduction for our construction. We refer the reader to Appendix D.2 for the full proof.

The CRS contains encodings of powers of some random secret point s as well as encodings of the
QRP polynomials evaluated at s. The construction asks the prover to present encodings computed
homomorphically using this CRS. Furthermore, the prover has to duplicate its effort with respect to
scalars α, αv, αw, αy. This allows the simulator to extract representations of terms as polynomials
of a certain degree using the augmented d-PKE extractor. The crs also contains terms multiplied
by a value β that enforce the prover to compute its encoding E(L) as a linear combination of some
given encoded polynomials. In the case when a proof π̂ would be accepted by the verifier but the
statement is not true, we can build an adversary B that is able to solve the q-PDH problem.

2 In order to see this, consider a proof that consists purely of encodings of zero. The checks in the verification
equations would pass if s happened to coincide with a value in the QRP used to describe a multiplication gate
with no connections to input or output wires. This applies to e.g. [PHGR13].
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The adversary B, given its q-PDH challenge, tailors a CRS by picking values r′v, r
′
w, r
′
y, α, αv, αw, αy

and β. Since the proof π̂ verifies but the statement is false, we can show that then one of the fol-
lowing must hold, where V (x) =

∑
k∈Iio ckvk(x) + Vmid(x) (similarly W (x), Y (x)) and Vmid(x) is

an extracted polynomial (through the d-PKE assumption).:

Case 1: V (x) ·W (x)−Y (x) 6= H(x) · t(x), but Equation (5) holds, therefore, V (s) ·W (s)−Y (s) =
H(s) · t(s).

Case 2: U(x) = r′vx
d+1Vmid(x)+r′wx

2(d+1)Wmid(x)+r′yx
3(d+1)Ymid(x) is not in the module S gen-

erated by theR-linear combinations of the polynomials {uk(x) = r′vx
d+1vk(x)+r′wx

2(d+1)wk(x)+
r′yx

3(d+1)yk(x)}k∈Imid .

If the first case holds, then γ(x) = V (x) ·W (x)− Y (x)−H(x) · t(x) is a nonzero polynomial of
degree some k ≤ 2d that has s as a root. The simulator can then from γ(x) and the PDH challenge
subtract off encodings of lower powers of s to get E(sq+1) and solve q-PDH. The second case follows
a similar strategy, this time invoking Lemma 4 and reasoning about U(x).

6 Designated Verifier SNARKs for computation over Z2k

We instantiate our previous designated verifier SNARK using QRPs where the underlying R is the
Galois Ring GR(2k, δ). As R is a free module over Z2k of rank δ, we can embed elements from
Z2k into the first coordinate of R. Hence, a QRP for arithmetic circuits over Z2k can be embedded
in a QRP for arithmetic circuits over R. We divide this section into two smaller ones. In the first
one, we discuss a suitable encoding scheme for R = GR(2k, δ). Second, we provide a simple, direct
instantiation of Theorem 3 using said encoding, together with some QRP gadgets to perform useful
computations such as bit decomposition.

6.1 A secure encoding for GR(2k, δ)

We will use the Joye-Libert (JL) cryptosystem [JL13], which encrypts elements from Z2k , as building
block for our encoding of Galois Ring elements. For completeness, and due space constraints in the
main body, we provide its description in Appendix F. The Joye-Libert cryptosystem is linearly
homomorphic over Z2k and it is secure under the assumption that k-quadratic residuosity is hard
[JL13]. Whereas decryption in JL has a linear cost in k, it has already been employed in the context
of efficient two-party computation over Z2k and there is empirical evidence [CRFG19, Section 5]
that it can be faster than more common encryption schemes such as Paillier.

Let R = GR(2k, δ). Given a ∈ R written in its additive form a = a0 + a1X + . . . + aδ−1X
δ−1

(see Equation (1)), we define our encoding E.JL as follows:

– (pk, sk)← Gen(1κ) calls KeyGen(1κ, k) in the JL cryptosystem and outputs (pk, sk).

– ZN1× . . .×ZNδ ← E.JLpk(a) is a probabilistic encoding algorithm mapping a ring element a ∈ R
to an encoding space Z = ZN1 × . . .× ZNδ such that the sets {{E.JL(a)} : a ∈ R} partition Z,
where {E.JL(a)} is the set of encodings of a. Concretely:

E.JL(a) =
(
Encpk(a0), . . . ,Encpk(ad−1)

)
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On the suitability of the encoding. The scheme E.JL clearly satisfies all non-security properties
required from an encoding. Under the security assumptions of the JL scheme, it is also reasonable
to assume that q-PDH (and q-PKE) hold for the encoding scheme too, where A has a success
probability negligible in d. This dependence on d is intrinsic to the arithmetic in R, as A can simply
output (a, y) = (2k−1,E.JL(

∑d−1
`=0 s`,0 ·X`)), where s`,0 are A’s guesses for the least significant bit of

each s` ∈ Z2k that conform the additive representation of s. Note that the fact that Enhanced-CPA
cannot be supported by the JL cyptosystem, as brought up by [CRFG19], is not an issue here.
Such notion requires interaction with an oracle which the Adversary does not have access to in our
construction, as we do not aim to provide strong soundness.

6.2 A simple construction

We now have everything we need to instantiate the protocol defined in Section 5.1 forR = GR(2k, δ).
It follows from inspection that, representing elements of R in their additive notation, A = {ai ∈ R :
ai =

∑δ−1
j=0 ai,j ·Xj , ai,j ∈ {0, 1}} is an exceptional set in canonical form. Let C be a circuit with

d multiplication gates and define A∗ as described in Section 5.1. Then, using the secure encoding
scheme E.JL from Section 6.1, we can invoke Theorem 3 to obtain a DV-SNARK for R ⊃ Z2k with
a soundness error of |A∗|−1 = (2δ − d)−1.

Efficiency considerations. Whereas in this construction δ is logarithmic in the desired soundness
error, we insist on the fact that our QRP does not suffer from the overhead of adding roughly
k multiplication gates whenever a modular reduction x mod 2k has to be computed, as it would
happen if the circuit was to be run by a SNARK over fields (see our discussion in Section 1.1).
Hence, avoiding this and using Rinocchio allows us not blow-up the degree of the QRP, which was
an efficiency bottleneck in e.g. [PHGR13]. We would further like to note that FFT-style techniques
can be applied to Galois Rings [CK91] and that the price of working with circuits over GR(2k, δ),
rather than Z2k , has the potential to be amortized, as it has happened in the context of Multi-Party
Computation protocols which faced similar limitations (c.f. [ACD+19, DLS20]).

In Appendix G we show how to build QRPs for bit decomposition, which is useful for practical
bit-wise operations such as comparisons.

6.3 Soundness amplification

Despite the previous arguments, there is a concern as to what is the practical impact of the extension
degree δ in the previous construction. We believe that this is an interesting question to explore in
experimental work, comparing the different strategies above. We suggest one strategy here. While
it would seem that we cannot escape from δ being logarithmically proportional to the soundness
error, we show that it is good enough to apply a parallel amplification strategy and choose any
integer δ > log(d), where d is the number of multiplication gates in the QRP Q.

For simplicity, we will explain how to do this in the worst case, which is when d is a power of
two. If we chose to set δ = log(d) + 1, we would then have that |AQ| = d and |A∗| = |A|− |AQ| = 2.
Let our target soundness error be 2−S . We can then run S independent instances of Rinocchio over
R = GR(2k, log(d) + 1) for the same QRP (that is, S different crs from S independent Setup
executions), for each of which the prover computes the Prove step from the (common) QRP
witness. The verifier only accepts if all the S proofs pass verification, yielding a soundness error of
|A∗|−S = 2−S .
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Let us note that this parallel repetition strategy does not greatly affect the overall proof size.
The reason behind this is that working over a smaller degree extension of Z2k not only improves the
computational efficiency, but it also reduces the size of each individual proof when using the E.JL
encoding. In more detail, if we let N denote the ciphertext size in the Joye-Libert JL cryptosystem
[JL13], our worst-case example that executes S proofs over GR(2k, log(d) + 1) transmits exactly
9(S − 1)N more ciphertexts than if we were to execute Rinocchio once over GR(2k, log(d) + S).
We would like to stress once again that this is a worst case scenario and that there is a whole
trade-off space between proof size and computational efficiency to be explored, concretely log(d) <
δ ≤ log(d) + S.

7 SNARKs for computation over Encrypted Data

In this section we detail how we can apply Rinocchio to the problem of verifiable computation over
encrypted data. Our approach is generic, where we just run a proving mechanism – the (zk-)SNARK
– on pre-existing Homomorphic Encryption (HE) schemes in a modular way. Taking advantage of
our generic SNARK construction from Section 5, this reduces to finding secure encoding schemes
over a ring that are compatible with the ciphertext space of the underlying HE scheme.

In Section 7.1 we review some popular homomorphic encryption schemes that are good candi-
dates for realising our privacy-preserving VC scheme. Then, by using a secure encoding scheme E
as the ones we provide in Section 7.2, we can invoke Theorem 3 to obtain a DV-SNARK for Rq, as
explained in Section 7.3.

7.1 Homomorphic Encryption schemes and their parameters

The first fully homomorphic encryption schemes were based on the Learning With Errors (LWE)
problem [Reg05], which is the main assumption behind schemes with ciphertexts in the ring Zq
such as [Bra12]. Nevertheless, the most efficient HE schemes are based on the Ring-LWE problem,
which is defined in [LPR10]. The LWE (resp. Ring-LWE) problem reduces, under some conditions,
to hard problems on euclidean lattices (resp. ideal lattices).

In Ring-LWE-based schemes, the ring of plaintext is Rp = Zp[Y ]/(f(Y )) and the ring of cypher-
texts is Rq = Zq[Y ]/(f(Y )) for some degree-N polynomial f(Y ). This is usually picked to be a
cyclotomic polynomial, so that it factors into ` irreducible factors modulo p. More concretely,
f(Y ) ≡

∏`
i=1 fi(Y ) mod p, where each fi(Y ) has degree φ(N)/`. By imposing p ≡ 1 mod N , this

creates ` “plaintext slots”, and hence a popular choice is f(Y ) = Y N + 1, where N is a power of
two. In order to deal with the noise growth that affects all of these schemes, q is usually chosen
large (several hundreds of bits). Besides the size of q, the rank of the associated lattice, which
corresponds to N , has to be high enough to meet the security requirements (usually between 210

and 215).
Frequently, q is chosen so that q =

∏k
i=1 pi. While this does not affect the asymptotic complexity

of operations on ciphertexts, it brings an important gain in practice: The polynomials of Rq are
represented as k polynomials of same degree but with smaller coefficients, thanks to the ring
isomorphism given by the CRT. Being able to efficiently deal with non-prime choices for q is hence
a significant advantage of our work, compared to that of [FNP20].

Concrete Ring-LWE schemes. The works that we will consider as a candidate for HE in our
privacy-preserving VC are: Brakerski and Vaikunthanatan [BV11b], BGV [BGV12], FV [FV12].
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We are interested in the Somewhat Homomorphic variants of these schemes, where the parameters
are set just large enough so as to enable homomorphic evaluation of some target function which
will be represented as a QRP and hence fixed by the SNARK’s crs.

In this setting, schemes like BGV [BGV12] use the so-called modulo-switching. They require
a chain of moduli q0 < · · · < qL to be able to scale the noise down after each multiplication by
switching the ciphertext to a smaller modulus. When evaluating circuits with large multiplicative
depth, one needs to choose a large chain of moduli and thus use higher dimensions resulting in poor
performance.

Scale invariant schemes allow to partially overcome this limitation by removing the need of
the modulus-switching procedure which potentially results in the possibility of evaluating circuits
with a bigger multiplicative depth. In his seminal work [Bra12], Brakerski introduced a new scale-
invariant scheme based on classical LWE where the noise grows only linearly during multiplication
removing thereby the necessity of modulus switching. This more effective noise control mechanism
makes the scale-invariant schemes particularly interesting. In [FV12], the scale-invariant scheme of
Brakerski is adapted to the Ring-LWE setting.

Applications for each HE scheme. From the different Ring-LWE schemes, each scheme is best suited
for certain types of operations: BGV [BGV12] uses, in general, slow operations, but benefit from
massively optimizations to treat many bits at the same time, while FV [FV12] allows to perform
large vectorial arithmetic operations as long as the multiplicative depth of the evaluated circuit
remains small. We are able to apply our SNARK for rings to proving homomorphic evaluations of
these schemes by first mapping the different ciphertext spaces of the different schemes to a common
algebraic structure, using some natural homomorphisms.

We observe the algebraic structure of the plaintext and ciphertext spaces from different HE
schemes:

– FV: plaintexts on the ring Rp = Zp[Y ]/(f(Y )) for some integer p (a prime, a power of 2 or a
small number 1 (mod 2N), depending on the functionality), ciphertexts on R2

q

– BGV: plaintexts on the ring Rp = Z[Y ]/(f(Y )), ciphertexts on R2
q

7.2 Secure Encodings for (Ring-)LWE ciphertexts

We introduce two different instantiations for the encoding scheme, one suitable for the ciphertext
ring Zq that appears in LWE-based HE and the other one for a polynomial ring Rq, as in the
ciphertext ring of Ring-LWE-based schemes.

Regev-style Encoding. Here we consider the input space of the encoding (the ring R over which
the QRP is defined) as the ones used in HE schemes based on standard LWE, i.e. the ring Zq, for
q ∈ N. One example of such schemes is [BV11a]. Note that Zq is not a field, since q is not required
to be a prime. A popular choice for q is a product of co-prime numbers q =

∏
i qi with some extra

conditions on qi’s as discussed in works as [Reg05, Pei09].

The encoding E.Regev we consider over the ring Zq is the same as the one used to construct
lattice-based SNARGs and SNARKs in [GMNO18, Nit19], a slight variation of the classical LWE
cryptosystem initially presented by Regev [Reg05]. The encryption scheme is described by param-
eters Γ ← (q,Q, n, α), with q,Q, n ∈ N such that (q,Q) = 1, and 0 < α < 1. We will also consider
χσ(S), the discrete Gaussian distribution over a discrete set S with mean 0 and parameter σ.
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Gen(1κ, Γ ): Choose some random string s← ZnQ. Output sk = s.

Esk(m): Given m ∈ Zq, sample a ← ZnQ, define σ = Qα; e ← χσ(Zq). Output C = (−a, a · s +
qe+m).

Dsk(C): Parse sk = s, C = (a0, c1) Compute m = (a0 · s+ c1) mod q.

On the suitability of the encoding. It is easy to see that this is a statistically-correct encoding
scheme. When encodings are added together and multiplied by scalars, the noise starts to build
up. Nevertheless, for any fixed ` there is a choice of parameters Γ such that the encoding is `-
linearly-homomorphic. Consequently, in order to ensure that we obtain a valid encoding of the
expected result, we need to start with sufficiently small noise in each of the initial encodings. A
more detailed discussion about the noise growth and the choices for Γ can be found in the work
of Banaszczyk [Ban95] and in more recent articles [GMNO18, BISW17, BISW18] that specifically
address SNARK applications of this encoding. The quadratic root detection and image verification
can be implemented using Dsk.

Security: Regarding security, this encoding scheme was already used and conjectured as linear-only
and secure against generalized q-PDH assumption over fields by prior works. Our generalized q-PDH
assumption over rings extends this, taking into account encodings over rings. The constructions
in [BISW17, BISW18] also employ E.Regev to instantiate their SNARG(K) and this is assumed to
be linear-only extractable, a stronger assumption than secure encoding, i.e. it implicitly satisfies
both the Generalized q-PDH and the Generalized Augmented q-PKE assumptions as shown in
Appendix C.

Extension to Ring-LWE. Our Regev-style encoding can be extended to an encoding over the ring
Rq used in Ring-LWE based schemes by combining N copies of the encoding above, similar to what
we did in Section 6.1.

Torus Encoding. We will use a variant of the Torus FHE (TFHE) cryptosystem from [CGGI20].
We let RR = R[Y ]/(f(Y )), RZ = Z[Y ]/(f(Y )) and Rq = Zq[Y ]/(f(Y )) denote the quotient rings
with respect to some polynomial f(Y ) = Y N + 1, where m is an integer and N is a power of 2. We
let T = R/Z be the torus, which is a Z-module structure but not a ring.

We consider the RZ-module TR = RR/RZ. The plaintext for the TFHE cryptosystem is the
Z-module T = R/Z. Our encoding scheme E.Torus has Zq as message space and will be used for
encoding of elements in Rq = Zq[Y ]/(f(Y )). The key remark is that the ring Rq can be identified
with a subgroup of the torus TN via the map Rq ' ZNq that identifies q−1Z/Z ' Zq as an

isomorphism of Z-modules. Also, TN ' TR because TN can be seen as a vector of coefficients. The
module structure of the encoding space TN+1 allows us to conjecture that E.Torus scheme only
supports linear homomorphic operations.

Let B = {0, 1}. The encoding scheme E.Torus is described by parameters Γ ← (q,N, α), with
q,N ∈ N such that 0 < α < 1. The noise parameter α is the standard deviation for a concentrated
distribution on the torus (more details can be found in [CGGI20]). Below, we describe the algorithms
of the encoding:

Gen(1κ, Γ ): Choose a random vector s ∈ BN . Output sk = s.

Esk(m): Given sk = s ∈ BN and m ∈ Zq, apply the map Zq ' q−1Z/Z to m and get m′ ∈ T such
that m′ ≡ m/q mod 1, sample a vector a ∈ TN and compute b = s · a+m′ + e where e ∈ T is
sampled according to a noise distribution defined by the standard deviation α.

19



Dsk(C): Parse sk = s, C = (a, b). Compute m” = b−a ·s = m”+e. Round m” to the nearest point
m′ on the torus with respect to a distance function and apply the equivalence q−1Z/Z ' Zq to
recover m.

On the suitability of the encoding. It is easy to see that this is a statistically-correct encoding scheme
and due to the linearly-homomorphic property of the cryptosystem (see Appendix H for specific
details), for a fixed `, there is a choice of parameters Γ such that we have `-linearly-homomorphic.
The quadratic root detection and image verification can be implemented using Dsk.

Security: E.Torus is semantically secure under the assumption TLWE, a generalized intractability
problem similar to LWE. Also, it is plausible that E.Torus scheme only permits linear homomor-
phisms, therefore we conjecture that this is a secure encoding, satisfying both q-PDH and q-PKE
assumptions. A heuristic argument for believing multiplication of two encoded values is impossible
is the torus structure of the encoding space, T is a Z-module and not a ring (i.e., the product
of elements in T is not well defined), so there is no way for one to compute any missing E(sq+1)
to solve q-PDH. Of course, the original encryption scheme TFHE as defined in [CGGI20] is more
elaborate and overcomes this limitation: it consists of three major encryption/decryption schemes,
each represented by a different plaintext space and makes use of tools like key-switching, gate
bootstrapping and gadget decomposition function to perform computations other than additions.
These operations are possible only if some extra keys are available, for example some precomputed
ciphertexts of the binary secret key in the case of gate bootstrapping. Since we do not consider all
these extensions and we do not provide encodings of the secret key in the crs, our encoding E.Torus
is limited to basic linear operations.

7.3 (zk-)SNARKs for Ring-LWE-based homomorphic encryption

We now have everything we need to instantiate the protocol defined in Section 5.1. We pick the
ring Rq = Zq[Y ]/(f(Y )), to match the ciphertext space of the Ring-LWE scheme from Section 7.1.
Depending on the choice of q and f(Y ) in the underlying schemes, we have different options for
our exceptional sets. Generally speaking, if q =

∏k
i=1 pi, where p < p1 < p2 < . . . < pk and p comes

from the plaintext space Rp, we can always find the exceptional set A∗ = {1, 2, . . . , p1 − 1} ⊂ R∗.
Hence, if p1 is big enough we don’t need to worry about anything else. Otherwise, we can move to
an extension of the ciphertext ring or apply the parallel soundness amplification strategy, similar
to what we did in Section 6.

We can next choose a secure encoding scheme E from the ones in Section 7.2. Assuming that the
evaluation algorithm of the underlying homomorphic encryption scheme (e.g. [FV12]) does not in-
volve modulus switching and rounding operations, we directly obtain a Designated Verifier SNARK
for computation on encrypted data by invoking Theorem 3 for Rq, as explained in Section 7.3. We
could choose schemes such as BGV [BGV12] that employ modulus switching techniques, and can
deal with the quadratic growth of the noise after a multiplication. In order to represent this oper-
ation as part of the arithmetic circuit represented by the QRP, we introduce a “mod qi” gate in
Appendix G. Even though the overall circuit remains over Rq, we would like to note that there is
no need to repeatedly apply the “mod qi” gate after e.g. every addition until switching to the next
modulus qi−1 happens. The reason behind this is that adding m elements smaller than qi results
in a value smaller than m · qi, thus not compromising correctness. Therefore, we only need to place
this gate in the circuit whenever correctness would otherwise be lost.
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Context hiding. Another challenge for our VC scheme would be preserving privacy of the inputs
against the verifier. Such a property would turn useful in the following two example scenarios. In
the first one, the person holding the secret key for HE and the verifier (who holds the secret key for
the encoding) checking the computation over the ciphertexts are different entities. In the second
scenario, the Prover wants to compute on ciphertext from the verifier using some secret coefficients
(e.g. a Machine Learning model, or his own input in a two-party computation scenario) that he
wants to remain private.

The context hiding property roughly says that output encodings together with input verification
tokens do not reveal any information on the input. Note that this is required to hold even against
a party that is in possession of the secret key for the encryption scheme. A formal definition of
context-hiding is given in Appendix A.3. We can make our VC scheme context-hiding using the
same techniques as proposed in [FNP20]. In the HE schemes we propose, information about the
underlying plaintexts may be inferred from the distribution of the noise recovered during decryption
of the result. To address this, the strategy is to statistically hide the noise. In a nutshell, the trick
is to add to the public key some honestly generated encryptions of 0 and then ask the untrusted
party to add these to the result of the computation.

Comparison with [FNP20]. The advantage of choosing our SNARK for ring computation as
a candidate for the VC scheme is that the resulting scheme enables a set of optimisations on the
underlying homomorphic encryption scheme leading to a total computational overhead smaller
than in prior works. One main reason is that the ciphertext spaces from existing HE schemes
are rings, so a QRP can be defined directly for the evaluation circuit of the HE scheme. Our
SNARK, instantiated with encoding schemes that work directly over the ciphertext space, avoids
the limitation of previous SNARKs for computation over fields.

The work by Fiore et al. [FNP20] relies on bilinear-group based primitives such as commitments
and SNARKs, and therefore imposes specific parameters to the ciphertext space, the polynomial
ringRq = Zq[Y ]/(f(Y )), which are not optimal for the relevant homomorphic schemes known today.
Moreover, they do not support modulo switching or other scaling operations. Another drawback of
this work comes from the trick of moving from ciphertexts in Rq = Zq[Y ]/(f(Y )) to scalars in Fq.
This requires expensive computations on large degree polynomials in Zq[Y ]. The prover needs to
carry all the circuit computations on the ciphertext polynomials without reduction modulo f(Y )
along the way (where f(Y ) is the quotient polynomial that defines Rq = Zq[Y ]/(f(Y ))). Even if
this is not counted in the cost of proof generation, it is an overhead for the worker performing the
homomorphic evaluation of the HE scheme. In our work, such an overhead is not necessary, our
techniques allow for the worker/prover to use the existing HE schemes with their latest optimisations
for computations over ciphertexts. After the HE evaluation, the prover can use the intermediate
ciphertexts from the homomorphic evaluation of the circuit as witness to our SNARK. We remark
that these are all elements in the ring Rq as opposed to large degree integer polynomials in Zq[Y ]
computed in Fiore et al. [FNP20].

Another major advantage of our SNARK is that it supports generic ringsRq with q =
∏L
i=0 qi for

a chain of moduli {q0, . . . , qL} as in the state-of-art leveled HE schemes. Our SNARK also enables
noise reduction operations as modulo switching in the evaluation circuit to be proven. A circuit for
the modulo switching procedure and its overhead in terms of QRP is detailed in Appendix G.2.
A qualitative difference is that the scheme of [FNP20] is a commit-and-prove scheme; and has the
inherent drawback that it is limited by the choice of schemes which are compatible with both the

21



commitment scheme and the proof system. Our scheme is an instantiation of a SNARK without
combining two different proof systems. We believe one could turn our scheme into a commit-
and-prove SNARK along the lines of [AGM18] by “extracting” a suitable encoding to act as a
commitment to the input wire values from the SNARK. We leave working out the details to obtain
a concrete commit-and-prove scheme for ring computation to future work.
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Auxiliary Supporting Material

A More Preliminaries

A.1 Zero-Knowledge Definition for SNARKs

Definition 6 (zero-knowledge Succinct Non-interactive ARgument of Knowledge (zk-
SNARK)). A zk-SNARK for a relation R is a SNARK for R with the following zero-knowledge
property:

– Zero-knowledge. There exists a PPT simulator (S1,S2) such that S1 outputs a simulated CRS
σ and trapdoor τ ; S2 takes as input σ, a statement x and τ , and outputs a simulated proof π;
and, for all PPT adversaries (A1,A2), the following is negligible in κ.

∣∣∣∣∣∣Pr

 (x,w) ∈ R ∧
A2(π, state) = 1

:

(σ, vk)← Setup(1κ)

(x,w, state)← A1(1
1λ , σ)

π ← Prove(σ, x, w)

 −
Pr

 (x,w) ∈ R ∧
A2(π, state) = 1

:

(σ, τ)← S1(1κ)

(x,w, state)← A1(1
1λ , σ)

π ← S2(σ, τ, x)

∣∣∣∣∣∣
A.2 Proofs from Section 2.1

Lemma 5 (Lemma 1, restated). Let R be a finite ring. Then all non-zero elements of R are
either a unit or a zero divisor.

Proof. For every a ∈ R \ {0}, let fa : R → R be the map given by fa(x) = a · x. If fa is injective,
then it has to be surjective, because R is finite. Therefore, in such a case there must exist an x ∈ R
verifying that fa(x) = 1. So we conclude that a is a unit.

Assume that fa(x) is not injective. Then there exist b, c ∈ R, b 6= c, such that a · b = a · c, and
thus a · (b− c) = 0. In other words, a is a zero divisor.

Theorem 4 (Theorem 1, restated). Let R be a finite commutative ring with identity and let
Z(R) denote the set of all its zero divisors. Then the following are equivalent:

1. Z(R) is an ideal.
2. Z(R) is a maximal ideal.
3. R is local.
4. Every x ∈ Z(R) is nilpotent.

Proof. (1) ⇔ (2). Assume Z(R) is an ideal and it is not maximal. Then, there must exist some
ideal I such that Z(R) ( I ( R. Which is absurd, as if Z(R) ( I, then I must contain a unit and
hence I = R.

(2) ⇒ (3). Assume R contains another maximal ideal I 6= Z(R). Then either I ( Z(R), in
which case it is not maximal, or otherwise it contains a unit and hence I = R.

(3) ⇒ (1). Let M be the maximal ideal of R. In order to see that Z(R) is an ideal, let x, y be
any two zero-divisors and (x), (y) the ideals they generate. Because R is local, then (x) ⊂ M and
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(y) ⊂ M . Since M is a proper ideal of R, then we have that ∀r ∈ R, r · (x + y) ∈ M and that
r · (x+ y) cannot be a unit. Hence, by Lemma 1, r · (x+ y) ∈ Z(R).

(1) ⇒ (4). Assume Z(R) is an ideal, and assume towards contradiction some x ∈ Z(R) such
that xi 6= 0 for any positive integer i. Then, as R is finite, there must exist some i > j > 0
such that xi = xj , from which we deduce that xj · (xi−j − 1) = 0. As xj 6= 0, then it has to
be that xi−j − 1 ∈ Z(R). Then, as we also now that xi−j ∈ Z(R) and Z(R) is an ideal, then
(xi−j − 1)− xi−j = −1 ∈ Z(R). Which is absurd, as then we would have that Z(R) = R.

(4) ⇒ (1). Let Z(R) = {x1, . . . , xm}. We will prove that Z(R) is an ideal by showing the
existence of some z ∈ R such that z · xj = 0 for all j ∈ [m], from which follows that Z(R) is an
ideal. We construct z = zm recursively as follows. Because x1 is nilpotent, there exists an a1 s.t.
xa1+1
1 = 0 but xa11 6= 0, so we define z1 = xa11 . For i ∈ [m], we define zi = zi−1 ·xaii , where ai (which

is possibly zero) is chosen such that zi 6= 0 and zi · xi = 0. Notice that ai must exist from the fact
that xi is nilpotent.

Lemma 6 (Lemma 2, restated). Let f : Rn → R be an n-variate nonzero polynomial. Let
A ⊆ R be a finite exceptional set. Let deg(f) denote the total degree of f . Then:

Pr
a←An

[f(a) = 0] ≤ deg(f)

|A|

Proof. We prove by induction on the number of variables n. For n = 1, let a1 ∈ A be a root of f(x).
As (x− a1) is a monic polynomial, we have that f(x) = (x− a1)f1(x), where the deg(f1) < deg(f).
Any other root a2 ∈ A has to be a root of f1(x), as (a2−a1) ∈ R∗ and f(a2) = 0. Hence, we have that
f(x) = (x−a1)(x−a2)f2(x), where the deg(f2) < deg(f1). By iterating this argument, we conclude
that f(x) cannot have more roots in A than deg(f) and hence Pra←A[f(a) = 0] ≤ (deg(f))/|A|.

Assume now the result holds for (n − 1)-variate polynomials. Given any n-variate polynomial
f(x) ∈ R[x1, . . . , xn], denote by k = degxn(f) the largest power of xn appearing in any monomial
of f . Then we have that:

f(x) =

k∑
`=1

x`n · g`(x1, . . . , xn−1)

Denote by E1 the event gk(a) = 0. By definition of k, we know that gk(x1, . . . , xn−1) is a non-zero
polynomial, so by induction hypothesis Pra←An−1 [E1] ≤ (deg(f) − k)/|A|. Assuming ¬E1 and by
applying the same reasoning as for n = 1, we have that f(a) ∈ R[xn] has at most k roots in A, so
Pra←A[f(a) = 0|¬E1] ≤ k/|A|. We finalize by noting that (where the probability is taking over the
choice of a← An):

Pr[f(a) = 0] = Pr[f(a) = 0|¬E1] · Pr[¬E1] + Pr[f(a) = 0|E1] · Pr[E1]

≤Pr[f(a) = 0|¬E1] + Pr[E1] ≤
deg(f)− k
|A|

+
k

|A|

A.3 Verifiable Computation

Verifiable computation [GKR08, GGP10] addresses the setting where a computationally limited
client wishes to outsource the computation of a function to an untrusted, but computationally
powerful worker. The goal is to enable to client to outsource the computation and be able to verify
the correctness of the result such that this verification is less work than the evaluation of the
function itself.
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Definition 7 (Verifiable Computation). A verifiable computation scheme is a tuple of polyno-
mial time algorithms (KGen,ProbGen,Compute,Ver) defined as follows.

– (SK,PK) ← KGen(1κ, F ): A randomized key generation algorithm takes a function F as input
and outputs a secret key SK, a public key PKF , and evaluation key EKF .

– ([x],VKx) ← ProbGenPK(x) A randomized problem generation algorithm takes the public key
PKF , an input x, and outputs an encoding of x, together with a private verification key VKx.

– [y] ← ComputePK([x]) A deterministic worker computation algorithm takes the evaluation key
EKF , the encoded input [x] to compute a value [y].

– y ← VerSK(VKx, [y]) A verification algorithm uses the verification key VKx, the worker’s output
[y], and outputs y ∈ {0, 1}∗ ∪⊥, where y is the output of the computation and ⊥ indicates that
the client rejects the worker’s output.

A verifiable computation scheme satisfies correctness, efficiency and security properties.

– Correctness. Correctness guarantees that if the worker is honest, the verification test will pass.
That is, for all F , and for all x in the domain of F ,

Pr

y = F (x) :

(SK,PK)← KGen(1κ, F )
([y],VKx)← ProbGenPK([x])

[y]← ComputePK([x])
y ← VerSK(VKx, [y])

 = 1

– Efficiency. The efficiency requirement states that the complexity of the outsourcing algorithm
ProbGen, and verification algorithm Ver together is less than the computation required to evaluate
F . A VC myust satisfy the property that for any x and any [y], the time required for ProbGen(x)
plus the time required for Ver(VKx, [y]) is o(T ), where T is the time required to compute F (x).

– Security. A VC scheme is secure if a malicious worker cannot make the verification algorithm
accept an incorrect answer. That is, a scheme is secure if the advantage of any PPT adversary
A in the game ExptV erA defined as Pr

(
ExptV erA [V C, F, κ] = 1

)
is negligible.

procedure Game ExptV erA (V C, F, κ)
(SK,PK)← KGen(1κ, F )
for i = 1, . . . , ` = poly(κ) do

xi = A(PK, x1, [x1], . . . , xi−1, [xi−1])
([xi],VKxi)← ProbGenPK(xi)

end for
(i, [y]) = A(PK, x1, [x1], . . . , x`, [x`])
y ← VerSK(VKxi , [y])

return ((y 6= ⊥) ∧ (y 6= F (xi)))
end procedure

Context-Hiding. An additional property that can be defined for a VC scheme is called context-
hiding. This captures the setting where one wants to hide information on the input x even from
the verifier. Such a property would turn useful in scenarios where the data encoder and the verifier
are different entities. Informally, this property says that output encodings [y], as well as the input
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verification tokens verification key VKx do not reveal any information on the input x. Notably this
should hold even against the holders of the secret key SK. We formalize this definition in a zero-
knowledge style, requiring the existence of simulator algorithms that, without knowing the input,
should generate (VKx, [y]) that look like the real ones. More formally:

Definition 8 (Context-Hiding). A VC scheme is context-hiding for a function F if there exist
simulator algorithms S1, S2 such that:

– the keys (SK,PK) and (SK′,PK′) are statistically indistinguishable, where (SK,PK)← KGen(1κ, F )
and (SK′,PK′, td)← S1(1

λ, f);
– for any input x, the following distributions are negligibly close

(SK′,PK′,VKx, [x], [y]) ≈ (SK′,PK′,VK′x, [x], [y]′)

where (SK′,PK′, td)← S1(1
λ, f), ([x],VKx)← ProbGenPK′(x),

[y]← ComputePK([x]), and ([y]′,VK′x)← S2(td,SK
′, F (x)).

B Quadratic Programs over Rings

We begin by recalling the definition of a QRP, after which we follow with all the results about QRP
composition and circuit representation.

Definition 9 (Quadratic Ring Programs (QRP)). A Quadratic Ring Program (QRP) Q over
a ring R consists of three sets of polynomials, V = {vk(x) : k ∈ [0,m]},W = {wk(x) : k ∈
[0,m]},Y = {yk(x) : k ∈ [0,m]} and a target polynomial t(x), all in R[X]. Let C be an arithmetic
circuit over R with n inputs and n′ outputs. We say that Q is a QRP that computes C if the
following holds:

a1, . . . , an, am−n′+1, . . . am ∈ Rn+n
′

is a valid assignment to the input/output variables of C if
and only if there exist an+1, . . . , am−n′ ∈ Rm−n−n

′
such that:

t(x) divides V (x) ·W (x)− Y (x),

where V (x) =
(
v0(x) +

∑m
k=1 ak · vk(x)

)
, W (x) =

(
w0(x) +

∑m
k=1 ak · wk(x)

)
and Y (x) =

(
y0(x) +∑m

k=1 ak · yk(x)
)
.

We define the size and degree of Q to be m and deg(t(x)) respectively. Given polynomials
V (x),W (x), Y (x) ∈ R[X] defined as above and corresponding to a valid assignment of the in-
put/output wires, we will call them a QRP solution.

Theorem 5. Let C be a circuit over the ring R containing only one multiplication gate. If C has
m− 1 inputs and a single output, there is a QRP of size m and degree 1 that computes C.

Proof. Let t(x) = x − r, r ∈ A, where A is the exceptional set. Define ρ1(X1, . . . , Xm−1) = c0 +∑m−1
i=1 ci ·Xi (resp. ρ2(X1, . . . , Xm−1) = d0+

∑m−1
i=1 di ·Xi) to be the linear polynomial corresponding

to the left (resp. right) input wire of the only multiplication gate in C. For k ∈ {0, . . . ,m− 1}, let
vk(x) = ck, wk(x) = dk, and yk(x) = 0. Set vm(x) = wm(x) = 0 and ym(x) = 1. Then we have that:

(
v0(x) +

m∑
k=1

ak · vk(x)
)
·
(
w0(x) +

m∑
k=1

ak · wk(x)
)
−
(
y0(x) +

m∑
k=1

ak · yk(x)
)

= ρ1(a1, . . . , am−1) · ρ2(a1, . . . , am−1)− am = p(x)
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We prove that this is a QRP for C. First assume that a1, . . . , am ∈ Rm is a valid assignment to the
input/output of C. Then p(x) = 0, which is trivially divisible by t(x). Conversely, assume that the
degree-zero polynomial p(x) is divisible by the degree-one t(x). As r is a root of t(x), then so it has
to be of p(x), which implies p(x) = 0.

Composing QRPs. Our definition of QRPs and the construction of QRP above, allow for their
composition exactly as in the field case [GGPR13]. In the following, we use the symbol ◦ both for
circuit and QRP composition. Note that the composition theorem below holds for the particular
QRP construction of Theorem 5, and we make no claims about other constructions that satisfy
the QRP definition. In particular, we are careful to pick all the roots of the target polynomials to
belong to the same exceptional set A.

For i ∈ {1, 2}, let Qi be a QRP computing an arithmetic circuit fi. Let Ii be the set of indices
representing all wires in fi and allow I1 ∩ I2 to ‘stitch’ up to ` output wires of I1 to the inputs of

I2. Denote such stitched circuit as C = C2 ◦ C1. Express Qi as V(i) = {v(i)k (x) : k ∈ Ii},W(i) =

{w(i)
k (x) : k ∈ Ii},Y(i) = {y(i)k (x) : k ∈ Ii} and target polynomial t(i)(x). Then, let Q = Q2 ◦ Q1

consists of V = {vk(x) : k ∈ I1 ∪ I2},W = {wk(x) : k ∈ I1 ∪ I2},Y = {yk(x) : k ∈ I1 ∪ I2} and a
target polynomial t(x) which are constructed as follows.

First, define t(x) = t(1)(x) · t(2)(x). Second, for all indices k̃ ∈ I2 \ I1, extend the definition

of the wire polynomials in Q1 as v
(1)

k̃
(x) = w

(1)

k̃
(x) = y

(1)

k̃
(x) = 0. Proceed analogously for Q2

and k̂ ∈ I1 \ I2. For all k ∈ I1 ∪ I2 and i ∈ {1, 2}, we can now set vk(x) ≡ v
(i)
k (x) mod t(i)(x),

wk(x) ≡ w
(i)
k (x) mod t(i)(x) and yk(x) ≡ y

(i)
k (x) mod t(i)(x). Such modular equivalences can be

satisfied as long as the target polynomials have no common roots, as we show in the following
lemma.

Lemma 7. Let t(1)(x), t(2)(x) ∈ R[X] be two polynomials which have roots only on the same
exceptional set A ⊂ R and such that they have no common roots. Let I1 = (t(1)(x)), I2 = (t(2)(x))
and I = I1 · I2. Then R[X]/I

∼−→ R[X]/I1 ×R[X]/I2.

Proof. For i ∈ {1, 2}, let t(i)(x) =
∏di
ji=1(x− r

(i)
ji

). Define ideals Ii,ji = (x− r(i)ji ), where 1 ≤ ji ≤ di.
Define S = {Ii,ji : 1 ≤ i ≤ 2, 1 ≤ ji ≤ di}. All the ideals in S are pairwise coprime. To see that, take
any K, K̃ ∈ S and re-denote for simplicity K = (x− k), K̃ = (x− k̃). As k − x ∈ K, we have that
k− k̃ = k−x+x− k̃ ∈ K+ K̃. Hence, as k, k̃ are two different elements from the same exceptional
set A ⊂ R, we have that k − k̃ is a unit and so K + K̃ = R[X].

Given the above, we can apply the CRT (Theorem 2) three times and conclude that

R[X]/I1 ×R[X]/I2
∼−→ (

d1∏
j1=1

R[X]/I1,j1)× (

d2∏
j2=1

R[X]/I2,j2)
∼−→ R[X]/I.

We prove that the above construction for Q = Q2 ◦Q1 indeed computes C = C2 ◦ C1.

Theorem 6. Let C1 and C2 be two arithmetic circuits computed by QRPs Q1 and Q2. Assume the
target polynomials of both QRPs have roots only on the same exceptional set A ⊂ R, but no common
roots. Allow also some of the input variables of C2 to include some ` output variables from C1, but
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let no other kind of overlapping between the arithmetic circuits be possible. Denote by C = C2 ◦C1

the circuit obtained by stitching C1 and C2 together at those ` wires.
There exists a QRP Q with size |Q| = |Q1| + |Q2| − ` and deg(Q) = deg(Q1) + deg(Q2) that

computes C. Q’s target polynomial is the product of the target polynomials for Q1 and Q2.

Proof. Let Ii/o, I1,i/o, I2,i/o be the indices of the input/output wires of C,C1 and C2, respectively.
Suppose ai/o = {ak ∈ Ii/o} is a valid input/output assignment for C. By definition, such in-
put/output assignment can be extended to a valid assignment to all wires of C and hence in
particular we can extend ai/o to a valid assignment ã = {ak ∈ I1,i/o ∪ I2,i/o}. Since Q1 is a QRP,
there exist coefficients b = {bk : k ∈ I1} which are consistent with the valid assignment to I1,i/o
and such that the polynomial

p(1)(x) =
(
v
(1)
0 (x) +

∑
k∈I1

bk · v
(1)
k (x)

)
·
(
w

(1)
0 (x) +

∑
k∈I1

bk · w
(1)
k (x)

)
−
(
y
(1)
0 (x) +

∑
k∈I1

bk · y
(1)
k (x)

)
is a multiple of t(1)(x). The same reasoning can be applied to Q2, for a polynomial p(2)(x) defined
from coefficients c = {ck : k ∈ I2} which must exist by the fact that Q2 is a QRP. By construction,
b and c must be consistent for the indices in I1∩I2, as those are contained in both I1,i/o and I2,i/o,
which were fixed by the extended assignment ã. Therefore, we can define a = {ak ∈ I1 ∪ I2} as
ak = bk for all bk ∈ I1 and ak = ck for all ck ∈ I2. Let

p(x) =
(
v0(x) +

∑
k∈I1∪I2

ak · vk(x)
)
·
(
w0(x) +

∑
k∈I1∪I2

ak · wk(x)
)

−
(
y0(x) +

∑
k∈I1∪I2

ak · yk(x)
)

where vk(x), wk(x) and yk(x) are defined from v
(i)
k (x), w

(i)
k (x) and y

(i)
k (x), i ∈ {1, 2}, as described

above (note the hypothesis of Lemma 7 are satisfied). We show that t(x) divides p(x). Since vk(x) =

v
(1)
k (x) mod t(1)(x), wk(x) ≡ w

(1)
k (x) mod t(1)(x) and yk(x) ≡ y

(1)
k (x) mod t(1)(x) for all k, and

since vk̃(x) = wk̃(x) = yk̃(x) ≡ 0 mod t(1)(x) for all k̃ ∈ I2 \ I1, we conclude that t(1)(x) divides

p(x). Applying analogous reasoning, we can deduce that t(2)(x) divides p(x) and, thus, t(x) =
t(1)(x) · t(2)(x) divides p(x)

Conversely, let p(x) be defined from the polynomial sets V,W and Y as above and such that
t(x) divides p(x). We show that any set of coefficients a enabling such divisibility contains a valid
assignment ai/o = {ak ∈ Ii/o} to the input/output wires of C. As p(x) ≡ 0 mod t(x), by Lemma 7,

p(x) ≡ 0 mod t(i)(x) for i ∈ {1, 2}. Since Q1 and Q2 are QRPs, it follows that a must then contain
valid assignment to the input/output wires of C1 and C2. As Ii/o ⊆ I1,i/o ∪ I2,i/o, we have found a
valid assignment ai/o to the input/output wires of C.

Finally, we conclude by showing how to build a QRP for any arithmetic circuit by using the
previous results from this section.

Theorem 7. Let C be an arithmetic circuit with n inputs in (a subring of) R and s < |A| multi-
plication gates, each with fan-in 2. If each output wire of C is the output of a multiplication gate,
there is a QRP with size n+ s and degree s that computes C.
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Proof. We obtain this result by combining Theorem 5 and Theorem 6, one multiplication gate
at a time. As long as s < |A|, we can ensure that the target polynomials of the QRPs for each
multiplication gate do not have common roots, so that Theorem 6 can be invoked.

There is only one small task remaining. Let C be a circuit with ñ ≥ 1 output wires which
are not the output of multiplication gates. Our last result does not teach us how to deal with C,
but we can build a modified circuit C̃ for which the hypothesis of Theorem 7 are satisfied. As in
[GGPR13], C̃ has one additional ‘dummy’ input wire, which is required to be always assigned to
the multiplicative identity 1. Furthermore, C̃ has a ñ additional multiplication gates: For each of
them, the left gate-input wire is the ‘dummy’ circuit-input wire and the right gate-input wire is
one of the circuit-output wires which did not satisfy the hypothesis of Theorem 7. It follows that
the QRP of size n+ s+ ñ+ 1 and degree s+ ñ that computes C̃ also computes the original C.

output

×

+

a1 a2

×

a3 a4

a5

a6

Roots Polynomials in QRP (V,W,Y, t(x))

Gates Left inputs Right inputs Outputs

v3(r5) = 1 w4(r5) = 1 y5(r5) = 1

r5 vk(r5) = 0, wk(r5) = 0, yk(r5) = 0,

k 6= 3 k 6= 4 k 6= 5

v1(r6) = v2(r6) = 1 w5(r6) = 1 y6(r6) = 1

r6 vk(r6) = 0, wk(r6) = 0, yk(r6) = 0,

k 6= 1, 2 k 6= 5 k 6= 6

Fig. 2. Arithmetic circuit and equivalent QRP. The polynomials V = {vk(x) : k ∈ [6]},W = {wk(x) : k ∈ [6]},
Y = {yk(x) : k ∈ [6]} and the target polynomial t(x) = (x − r5)(x − r6) are defined in terms of their evaluations at
two random points belonging to the same exceptional set (r5, r6 ∈ A), one for each multiplicative gate.

Given a circuit C, we can construct a QRP for C using the composition theorem above. We
can also construct a QRP directly for the given circuit without relying on composition. Let C be
a circuit whose gates have fan-in two and fan-out one. To build a QRP, we will make use of a
exceptional set A as follows. In order to define the target polynomial, we will pick elements rg ∈ A
for each multiplication gate g ∈ C and define t(x) =

∏
g∈C(x − rg). We define the polynomials

vk(x), wk(x) and yk(x) by interpolating over those same points in the same way one proceeds in
the QAP case [PHGR13]. As an example for this procedure, see Figure 2.

C Assumptions on Ring Encodings

Consider an encryption scheme which satisfies the properties required for an encoding scheme (see
Definition 5). If the encryption scheme can be assumed to be linear-only extractable, which is
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the assumption in [BCI+13, BISW17, BISW18], then it automatically is a secure encoding, i.e.
it satisfies both the Generalized q-PDH and the Generalized Augmented q-PKE assumptions. We
recall the linear-only extractable definition from [BCI+13], which we adapt to the broader context
of (non-field) commutative rings with identity.

Definition 10 (Linear-only extractable). An encoding scheme Encode = (Gen,E) over R is
linear-only extractable if for all probabilistic polynomial time algorithms A, there exists a proba-
bilistic polynomial time extractor χA such that the following probability is negligible in the security
parameter.

Pr

c 6= a0 +
∑n

i=1 aixi :

(pk, sk)← Gen(1κ),

x1, . . . , xn
R← R,

σ = (pk,E(x1), . . . ,E(xn)),
(E(c); a0, . . . , an)← (A||χA)(σ)

 .

Lemma 8. If an encoding scheme Encode = (Gen,E) is IND-CPA secure and linear-only ex-
tractable, then it is an encoding scheme that satisfies Generalized Augmented q-PKE (Assump-
tion 2).

Proof. Let σ = (pk,E(1),E(s), . . . ,E(sq),E(α),E(αs), . . . ,E(αsq)). We will show that Encode satis-
fies q-PKE, meaning we will show that for any adversary A able to produce c, ĉ such that αc− ĉ = 0,
there exists an extractor χA which outputs coefficients ai satisfying c =

∑q
i=0 ais

i with non negli-
gible probability.

We define two adversaries Bc and Bĉ that, upon receiving as input σ, run exactly the same
code as A and output, respectively, c and ĉ. By our linear-only extractable assumption on E,
there exist an extractor χc (resp. χĉ) for Bc (resp. Bĉ) which outputs a0, . . . , aq, b0, . . . , bq (resp.
a′0, . . . , a

′
q, b
′
0, . . . , b

′
q) such that

c =
∑q

i=0 ais
i +
∑q

i=0 biαs
i, ĉ =

∑q
i=0 a

′
is
i +
∑q

i=0 b
′
iαs

i

with non negligible probability.

Knowing that αc− ĉ = 0 implies either that the polynomial

P (X,Y ) = X2∑q
i=0 biY

i +X
∑q

i=0(ai − b′i)Y i −
∑q

i=0 a
′
iY

i

is the zero polynomial, or that (α, s) are roots of P (X,Y ). We rule out the second case by the
IND-CPA security of the encoding scheme and the generalized Schwartz-Zippel lemma. Hence,
P (X,Y ) = 0, which gives us that for every i ∈ [q], bi = a′i = 0 and ai = b′i. Therefore, we have
defined an extractor χA for the Generalized Augmented q-PKE assumption, which outputs the
coefficients ai obtained from χc.

Lemma 9. If an encoding scheme Encode = (Gen,E) is IND-CPA secure and linear-only ex-
tractable, then it is an encoding scheme that satisfies the Generalized q-PDH assumption (As-
sumption 1).

Proof. Consider an adversary A that breaks q-PDH of the scheme Encode. We construct an adver-
sary B that breaks IND-CPA. Consider the adversary B playing left-or-right oracle game where the
adversary gets access to an encryption oracle that receives a pair of chosen messages always returns
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a ciphertext encrypting either the left or the right message. The adversary wins if it guesses the
left-or-right bit.

B samples s0, s1 uniformly from an exceptional set A∗ ⊂ R∗. B gets access to the left-or-
right encryption oracle, makes queries on pairs (sk0, s

k
1) for k ∈ {0, . . . , q, q + 2, . . . , 2q} , and

receives {E(sib)}
2q,i6=q+1
i=0 for challenge bit b. B now runs the q-PDH adversary A on {E(sib)}. A

returns y ∈ {E(sq+1
b )}. B now invokes the extractor that exists since Encode satisfies linear-only

extractability (c.f. Definition 10). χA, given the same input as A and its internal randomness,

returns a0, · · · , aq, aq+2, a2q such that a0 +
∑2q,i6=q+1

i=1 ais
i
b = sq+1

b . Since B knows s0, s1, it checks

whether a0 +
∑2q,i6=q+1

i=1 ais
i
0 = sq+1

0 or a0 +
∑2q,i 6=q+1

i=1 ais
i
1 = sq+1

1 , and outputs the bit b∗ for which
this holds. Notice that the previous strategy will output a single possible value for b∗ with high
probability, which further matches the challenge bit b. This is because, for the random s1−b, we
have that a0 +

∑2q,i 6=q+1
i=1 ais

i
1−b = sq+1

1−b will hold only with probability q/|A∗|, by the generalized
Schwartz-Zippel lemma.

Informally, the linear-only extractability assumption captures the fact that an adversary can
perform only affine operations over the encodings provided as input. It can be argued that the PDH
asssumption is in some sense weaker than linear-only extractability since the former is implied by
the latter. However, if for an encoding scheme like JL, the linear-only extractability property is
broken, computing non-linear homomorphisms would be possible which would mean efficient fully
homomorphic encryption which is not known using current techniques. In [CRFG19], the authors
consider a seemingly related notion called enhanced CPA and show that an additively homomorphic
encryption scheme over Z2k cannot satisfy enhanced CPA. We note that their attack relies on the
fact that the adversary has access to an oracle that checks the validity of a ciphertext. In our use
of a encoding scheme in constructing a SNARK, we are concerned only with one-time soundness
and our setting does not provide access to such oracles to the adversary (see also the remark at the
end of Section 2). In proving multi-theorem soundness of designated-verifier SNARK constructions,
one needs to make a stronger assumption called the q power-knowledge of equality (q-PKEQ)
assumption. The following q-PKEQ assumption is needed in the designated verifier setting where
the adversary has access to a verification oracle (in the public verification setting, this is for free and
the adversary has no additional advantage). This assumption is invoked to prove multi-statement
soundness in the proof to test if two (potentially adversarially generated) encodings have the same
value underneath without having the secret key.

Assumption 3 (Generalized q-PKEQ) The generalized q power-knowledge of equality assump-
tion holds for an encoding scheme Encode if for all non-uniform probabilistic polynomial time al-
gorithm A, there exists a non-uniform probabilistic polynomial time extractor χA such that the
following probability is negligible in the security parameter.

Pr


(b = 0 ∧ ĉ ∈ {E(c)})

∨
(b = 1 ∧ ĉ /∈ {E(c)})

:

(pk, sk)← Gen(1κ),

s
R← A∗,

σ = (pk,E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q)),
(E(c), ĉ; b)← (A||χA)(σ)

 .
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D Proofs from Section 5

Lemma 10 (Lemma 3, restated). Given an exceptional set of size n in R, we can construct
another exceptional set A = {0, a1, . . . , an−1 : ai ∈ R∗}. When an exceptional set has the latter
form, we say it is given in its canonical form.

Proof. Let B = {b1, . . . , bn} ⊂ R be an exceptional set. For all i ∈ {1, . . . , n−1}, define ai = bn−bi.
By the definition of B, we have that ai ∈ R∗ and hence so is (0−ai). Furthermore, ∀i 6= j, ai−aj =
(bn − bi)− (bn − bj) = bi − bj which is again a unit by the definition of B.

D.1 Proof of Lemma 4

At a high level, this lemma is invoked in the security proof to ensure that, if the adversary outputs
a false proof that passes verification that implicitly uses some V (x) that is not in the span of the
QRP polynomial set {vk(x)}, then the reduction will be able to use that false proof to solve a
q-PDH challenge.

Lemma 11 (Lemma 4, restated). Let R[x]≤e denote the polynomials in R[x] of degree at most
e. Let R[x]¬(e) denote polynomials over R[x] that have a zero coefficient for xe. Let A∗ ⊂ R∗ be
an exceptional set. We define A∗[x]≤e, A

∗[x]¬(e) analogously. Given a set U = {ui(x)} ⊂ R[x]≤e
such that |U| = m, let span(U) denote the set of polynomials that can be generated as R-linear
combinations of the polynomials in U . Let a(x) ∈ A∗[x]≤e+1 be generated uniformly at random
subject to the constraint that {a(x) · ui(x) : ui(x) ∈ U} ⊂ R[x]¬(e+1). Let s ← A∗. Then, if
e > m− 1, for all algorithms A,

Pr

 u(x) ∈ R[x]≤e ∧
u(x) /∈ span(U) ∧

a(x) · u(x) ∈ R[x]¬(e+1)
: u(x)← A(U , s, a(s))

 ≤ 1

|A∗|

Proof. Let u(x) = u0 + u1x + . . . + uex
e ∈ R[x] and u(x) /∈ span(U). Define the vector u = (u0,

. . . , ue, 0), corresponding to the coefficients of the monomials in u and padded with a zero, and
similarly define ui = (ui,0, . . . , ui,e, 0) for every ui(x) ∈ U . Then, u is not in the span of the vectors
(se+1, se, . . . , 1)

⋃
i∈[m] ui. This follows from the assumption that u(x) /∈ span(U) and the fact that

the last element of u is a 0 and that of (se+1, se, . . . , 1) is 1.
This time following the opposite order, define a vector a = (ae+1, . . . , a0) from the coefficients

of a(x) = a0 + · · ·+ ae+1 · xe+1. Then, A has the following information about a(x):

〈a, (se+1, se, . . . , 1)〉 = a(s)

〈a, (ui,0, . . . , ui,e, 0)〉 = 0, i ∈ [m] (6)

Where the second set of equations comes from the fact that {a(x) ·ui(x) : ui(x) ∈ U} ⊂ R[x]¬(e+1).
This provides a system of m + 1 linear equations on the e + 2 coefficients a, so as e > m − 1 by
hypothesis, a appears uniformly random to A.

Finally, assume that Amanages to satisfy the last missing condition for u(x), that is a(x)·u(x) ∈
R[x]¬(e+1), which is equivalent to 〈a,u〉 = 0. Since u is not in the span of (se+1, se, . . . , 1)

⋃
i∈[m] ui,

it is not a linear combination of the equations constituting the system in (6). Hence, since every
ai ∈ A∗ and a appears uniformly random to A (subject to the constraints provided by the system
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of linear equations), by looking at u as the coefficients of a polynomial ũ(x1, . . . , xe+2) = u0 · x1 +
u1 · x2 + · · ·+ ue · xe+1 + 0 · xe+2, we have that Pr[〈a,u〉 = 0] = Pr[ũ(a) = 0] ≤ 1/|A∗| as a direct
consequence of the Generalized Schwartz-Zippel Lemma (Lemma 2).

D.2 Proof of Theorem 3

In this section, we prove that the construction satisfies the properties of a SNARK as stated in
Definition 1. We recall the result:

Theorem 8 (Theorem 3, restated). Let R be commutative ring with identity with an excep-
tional subset A, and d be an upper bound on the degree of the QRP. Assuming that the generalized
augmented d-PKE and the generalized q-PDH assumptions hold for the encoding scheme Encode
over R (and A∗) for q = 4d+ 4, the protocol Rinocchio described in Section 5.1 is a SNARK as per
Definition 1, with soundness error 1/|A∗|.

Completeness. Assuming the encoding scheme Encode satisfies (statistical) correctness, then it
follows by inspection that the verification equations are satisfied by a correctly generated proof π.
Therefore (statistical) completeness of the Rinocchio protocol follows by QRP completeness.

Soundness. Assume there exists an adversary A who returns the proof of a false statement. We
use this adversary A in order to construct an adversary B who breaks the q-PDH assumption.

Setting up the CRS. Adversary B is given the description of the encoding scheme, and the challenge
E(1),E(s), . . . , E(sq), E(sq+2), . . . ,E(s2q). B provides the crs to A by constructing it as follows. It
samples r′v, r

′
w, α, αv, αw, αy at random from R∗ and sets r′y = r′vr

′
w. Let rv = r′vs

d+1, rw = r′ws
2(d+1),

and ry = r′ys
3(d+1). The value β is chosen as follows. Sample a polynomial βpoly(x) ∈ A∗[X]

of degree at most 3d+ 3 uniformly at random, subject to the constraint that βpoly(x) · (r′vvk(x) +
r′wx

(d+1)wk(x)+r′yx
2(d+1)yk(x)) has a zero coefficient for x3d+3 for all k. B sets β = sq−(4d+3)βpoly(s).

Looking ahead in our proof, the polynomial xq−(4d+3) ·βpoly(x) will play the role of a(x) in Lemma 4.
B sets the CRS as follows:

crs =
(
{E(si)}di=0, {E(rvvk(s))}k∈Imid , {E(rwwk(s))}k∈Imid , {E(ryyk(s))}k∈Imid ,

{E(αvrvvk(s))}k∈Imid , {E(αwrwwk(s))}k∈Imid , {E(αyryyk(s))}k∈Imid ,

{E(αsi)}di=0, {E(β(rvvk(s) + rwwk(s) + ryyk(s))}k∈Imid , pk
)

We now argue that B can construct the above crs using the terms provided in its challenge.
Consider the term in the proof that involves β, which is the final proof term that the prover will
have to compute using the CRS.

E(β(rvvmid(s) + rwwmid(s) + ryymid(s)))

= E(β(r′vs
d+1vmid(s) + r′ws

2(d+1)wmid(s) + r′ys
3(d+1)ymid(s))). (7)

In this term, β is multiplied by a polynomial evaluated at s. Note that B generated β also as a
polynomial evaluated at s. If we further rewrite (7) by expressing β in terms of s, we have

E(sq−3d−2r′vβpoly(s)vmid(s) + sq−2d−1r′wβpoly(s)wmid(s) + sq−dr′yβpoly(s)ymid(s))

= E(sq−3d−2βpoly(s)(r
′
vvmid(s) + sd+1r′wwmid(s) + s2d+2r′yymid(s))). (8)

36



Since βpoly(x) · (r′vvk(x) + r′wx
d+1wk(x) + r′yx

2d+2yk(x)) has a zero coefficient in front of x3d+3,
the value underneath the encoding in (8) has a zero in front of sq+1. The powers of s in the encoding
go up to (q−3d−2)+(3d+3)+(2d+2)+d = q+3d+3 ≤ 2q. The polynomials vk(x), wk(x), yk(x)
are of degree d, and none of the other elements in the CRS contain sq+1 inside the encoding. Since
we have q ≥ 4d+ 4, all the elements in the CRS can be generated using terms in the challenge.

We need to make sure that a crs generated as above has a distribution which is indistinguishable
to the one given in our protocol. Note that, as βpoly(x) is a polynomial of degree at most 3d+3 and
β = sq−(4d+3)βpoly(s), we have that Pr[β = 0] ≤ (3d+ 3)/|A∗| (Lemma 2). This is a bigger chance
for β = 0 than in our protocol, but notice that A never sees β in the clear, but rather encodings of
it. There are hence two cases: Either E(0) is computationally indistinguishable from any E(a) where
a 6= 0, or it is not (as it happens in the exponentiation-based encodings of e.g. [GGPR13, PHGR13]).
In the former case, A will accept the crs. In the latter case, B checks whether β = 0 by distinguishing
whether the last term of crs is E(0) and, if so, samples a new βpoly(x) and repeats the process above
until the last term is not E(0).

Extraction. With the CRS set this way, B can now obtain a purported proof from A. Due to
the indistinguishability of simulated CRS and real CRS, A aborting on input the tailored CRS is
negligible. Let π̂ be a purported proof returned by A, which is parsed as follows:

π̂ = ( E(rvVmid),E(rwWmid),E(ryYmid),E(H),

E(rvV̂mid),E(rwŴmid),E(ryŶmid),E(Ĥ),E(L)
)

Since B knows that rv = r′vs
d+1, rw = r′ws

2(d+1), and ry = r′ys
3(d+1), it can reinterpret π̂ as

follows: (
Er′v(s

d+1Vmid),Er′w(s2d+2Wmid),Er′y(s
3d+3Ymid),E(H),

Er′v(s
d+1V̂mid),Er′w(s2d+2Ŵmid),Er′y(s

3d+3Ŷmid),E(Ĥ),E(L)
)

Notice that the proof elements are now being treated as if they belonged to four different encodings:
E,Er′v ,Er′w ,Er′y , where the four latter are defined as Ea(b) = E(a ·b). It is easy to see that, by the fact
that r′v, r

′
w, r
′
y ∈ R∗ and the assumption that E is a secure encoding, so are Er′v ,Er′w ,Er′y . Since π̂

passes verification (in particular Equation (3)), we can apply the following reasoning for E and any
of the other three encodings. As (E(H),E(Ĥ)) is of the form (E(H),E(αH)), B can use the d-PKE
extractor χA to extract a polynomial H(x) =

∑d
i=0 hix

i of degree at most d such that H = H(s).
This is because the CRS given to A is of the form (σ, z), where:

σ = (pk, {E(si)}di=0, {E(αsi)}di=0), z = crs \ σ

Note that the auxiliary information z is independent of α, as the relation between e.g. Er′v(s
d+1Vmid)

and Er′v(s
d+1V̂mid) is an i.i.d. αv. If we look at any of the three remaining encodings Er′v(·), Er′v(·)

or Er′v(·), we will next show that B can extract Vmid(x) of degree at most d and such that Vmid =
Vmid(s) due to the (2d+ 1)-PKE assumption (resp. Wmid(x) due to (3d+ 2)-PKE and Ymid(x) due
to (4d+ 3)-PKE). Focusing on Vmid(x), notice that A does not have a (2d+ 1)-PKE challenge, but
the following (where the problem is with σ̃v, not with z)

σ̃v = (pk, {Er′v(s
d+1vk(s))}k∈Imid , {Er′v(αvs

d+1vk(s))}k∈Imid), z = crs \ σ̃v
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which differs from the expected σv = (pk, {Er′v(s
i)}2d+1

i=0 , {Er′v(αvs
i}2d+1
i=0 ) in two ways: It is com-

pletely missing the powers {si}di=0 and, for those between d + 1 and 2d + 1, it instead has the
evaluation at s of the polynomials {xd+1vk(x)}k∈Imid . Informally, since B can compute σ̃v from σv,
we can extract. In more syntactic rigour, B can send σv to a (2d+ 1)-PKE adversary Av who runs
internally the SNARK prover A on σ̃v, so as Equation (3) verifies, then, by the PKE assumption
there exists an extractor χAv which gets a polynomial xd+1Vmid(x) =

∑d
i=0 vix

d+1+i of degree
at most 2d + 1 such that Vmid = Vmid(s). Applying the same reasoning, we can conclude on the
extraction of polynomials Wmid(x), Ymid(x) of degree at most d such that Wmid = Wmid(s) and
Ymid = Ymid(s).

Reducing to PDH. Since the proof π̂ verifies but the statement is false, we show that then one of
the following must hold, where V (x) =

∑
k∈Iio ckvk(x) + Vmid(x) and similarly W (x) and Y (x):

Case 1: V (x) ·W (x)−Y (x) 6= H(x) · t(x), but Equation (5) holds, therefore, V (s) ·W (s)−Y (s) =
H(s) · t(s).

Case 2: The polynomial

U(x) = r′vx
d+1Vmid(x) + r′wx

2(d+1)Wmid(x) + r′yx
3(d+1)Ymid(x)

is not in the module S generated by the R-linear combinations of the polynomials {uk(x) =
r′vx

d+1vk(x) + r′wx
2(d+1)wk(x) + r′yx

3(d+1)yk(x)}k∈Imid .

We demonstrate that those are the only cases for a false π̂ by proving that, if none of them
holds, then V (x),W (x) and Y (x) are a QRP solution, which would then mean that π̂ is a valid
proof. So, towards contradiction, assume both that U(x) ∈ S and V (x) ·W (x)−Y (x) = H(x) · t(x).
Since U(x) ∈ S, it can be expressed as U(x) =

∑
k∈Imid ckuk(x), where ck ∈ R. Thus,

U(x) = r′vx
d+1v′(x) + r′wx

2(d+1)w′(x) + r′yx
3(d+1)y′(x),

where we define v′(x) =
∑

k∈Imid ckvk(x), w′(x) =
∑

k∈Imid ckwk(x) and y′(x) =
∑

k∈Imid ckyk(x).
Note that v′(x), w′(x), y′(x) have degree at most d, since they are in the spans of {vk(x)}k∈Imid , {wk(x)}k∈Imid
and {yk(x)}k∈Imid respectively. Since Vmid(x),Wmid(x), Ymid(x) are also polynomials of degree at
most d, and since the R-submodules {xd+1+i : i ∈ [0, d]}, {x2(d+1)+i : i ∈ [0, d]}, and {x3(d+1)+i :
i ∈ [0, d]} of R[x] are disjoint (except at zero) we have that

U(x) = r′vx
d+1Vmid(x) + r′wx

2(d+1)Wmid(x) + r′yx
3(d+1)Ymid(x)

= r′vx
d+1v′(x) + r′wx

2(d+1)w′(x) + r′yx
3(d+1)y′(x),

we conclude that Vmid(x) = v′(x), Wmid(x) = w′(x) and Ymid(x) = y′(x). Therefore, V (x) =∑
k∈Iio ckvk(x)+Vmid(x) =

∑
k∈Iio ckvk(x)+

∑
k∈Imid ckvk(x),W (x) =

∑
k∈Iio ckwk(x)+Wmid(x) =∑

k∈Iio ckwk(x) +
∑

k∈Imid ckwk(x), and Y (x) =
∑

k∈Iio ckyk(x) + Ymid(x) =
∑

k∈Iio ckyk(x) +∑
k∈Imid ckyk(x). Finally, as we assumed that V (x) · W (x) − Y (x) = H(x) · t(x), we have that

V (x),W (x), Y (x) can be written as the same linear combination {ck}k∈Iio∪Imid of their respective
sets, and that t(x) divides V (x) ·W (x)− Y (x). Therefore, V (x),W (x), Y (x) are a QRP solution.

We now address the two cases corresponding to a false proof π̂ and show that, in both Case 1
and Case 2, B can break the Generalized q-PDH (Assumption 1).
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Case 1: V (x) ·W (x)−Y (x) 6= H(x) · t(x). The non-zero polynomial γ(x) = V (x) ·W (x)−Y (x)−
H(x) · t(x) has degree k ≤ 2d and s as a root. Express γ(x) = γk · xk + γ̂(x), where k ≤ 2d,
γk 6= 0 and deg(γ̂(x)) < k. Since s is a root of γ(x), it is also a root of xq+1−kγ(x). Hence,
γk · sq+1 = −sq+1−kγ̂(s). B can compute E(γk · sq+1) by computing E(−sq+1−kγ̂(s)), which is a
known linear combination of the {E(si)}qi=0 values belonging to the q-PDH instance. This solves
the q-PDH challenge.

Case 2: The polynomials Vmid(x),Wmid(x), Ymid(x) are not in the required spans. There does
not exist {ck}k∈Imid such that Vmid(x) =

∑
k∈Imid ckvk(x),Wmid(x) =

∑
k∈Imid ckwk(x) and

Ymid(x) =
∑

k∈Imid ckyk(x). Then, the polynomial U(x) = r′vx
d+1Vmid(x) + r′wx

2(d+1)Wmid(x) +

r′yx
3(d+1)Ymid(x) is not in the module S generated by the R-linear combinations of the polyno-

mials {uk(x) = r′vx
d+1vk(x) + r′wx

2(d+1)wk(x) + r′yx
3(d+1)yk(x)}. Recall that B chose a polyno-

mial βpoly(x) ∈ A∗[X] of degree at most 3d+ 3 subject to the constraint that all polynomials in
{βpoly(x) ·(r′vvk(x)+r′wx

(d+1)wk(x)+r′yx
2(d+1)yk(x))} have a zero coefficient for x3d+3. Thus, by

Lemma 4, the coefficient of xq+1 in the polynomial ω(x) = xq−(4d+3) ·βpoly(x)·U(x) is a ∈ R\{0}
with probability 1−1/|A∗|. Furthermore, B can compute all the coefficients of ω(x) on its own, so
it can subtract from E(L) = E(sq−(4d+3)βpoly(s)·(sd+1Vmid(s)+s2(d+1)Wmid(s)+s3(d+1)Ymid(s)))
all the monomials corresponding to E(sj) for j 6= q + 1 and obtain E(a · sq+1). Note that this is
possible even when βpoly(s) = 0. By outputting (a,E(a · sq+1)), B breaks the generalized q-PDH
assumption.

E QRP as an Abstraction

In this section, we highlight the generality of our notion of QRP and our construction by out-
lining how our notion recovers the QPP based construction of [KPP+14] for polynomial circuits.
In [KPP+14], Kosba et al. generalize the notion of Quadratic Arithmetic Programs over a field
F to that of Quadratic Polynomial Programs (QPPs), which compute circuits whose wires carry
values in the ring F[Z] of polynomials over the base field F. These polynomial circuits, where the
addition and multiplication operations are over F[Z], are introduced with the goal of representing
(multi-)sets S of elements over F. Our definition of QRPs and SNARK construction, being more
general than those of [KPP+14], also covers their work and allows us to see it as an instantiation
of Rinocchio for R = F[Z].

In [KPP+14], we have that A = F ⊂ R, i.e. the degree-zero polynomials, and A∗ = F∗. The
polynomials vk, wk, zk ∈ R[X] = F[Z][X] can be made univariate in X by imposing that the
coefficients of public linear combinations in the arithmetic circuit over R are all field elements,
rather than elements of R = F[Z], which is also the approach taken in [KPP+14]. The secure
encoding E : R→ S consists in, given ck(z) ∈ R, producing Ẽ(ck(t)) = gck(t) for some fixed, secret
t ∈ F and where Ẽ : F→ S is the same encoding used for QAPs over finite fields, e.g., in Pinocchio.

To cast the construction of [KPP+14] in our framework, consider the following encoding E :
F→ S to encode the QRP polynomials in the CRS: E(s) = {Ẽ(ti · s)}ni=1, where n is determined by
the degree of the polynomials on the wires of the computation circuit. When Ẽ is exponentiation
in a bilinear group, the encoding E satisfies additive homomorphism and the resulting SNARK
achieves public verifiability. The central idea is that even though one has to encode “wire values”,
which in this case are polynomials and therefore, ring elements, the polynomials can be mapped
to an evaluation instead, resulting in a field element which is subsequently encoded during the
computation of the proof by the prover. The encoding E is designed to allow the prover to compute
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this encoding where the evaluation point is the secret t. At a high level, the encoding and the CRS
crafted this way means that the secret point of evaluation of the wire polynomials is t, the secret
point of evaluation for the QRP polynomials is s, and the prover can compute the correct encodings
of the SNARK proof given the encodings in the CRS. We sketch how the SNARK construction via
QPP is a special case of our construction via QRP below.

QPP as an instantiation of QRP. The following definition is recovered by Definition 4, where
R = Fp[Z], A = Fp ⊂ R, i.e. the degree-zero polynomials, and A∗ = F∗p. The bivariate polynomial
p(x, z) accounts for the wire values themselves being polynomials.

Definition E1 (Quadratic Polynomial Program (QPP) [KPP+14]) A QPP Q consists of
three sets of polynomials, V = {vk(x)},W = {wk(x)},Y = {yk(x)} and a target polynomial t(x).
Let C be a polynomial circuit. We say that Q computes C if the following holds:

a1(z), . . . , an(z), am−n′+1(z), . . . am(z) is a valid assignment to the input/output variables of C
if and only if there exist polynomials an+1(z), . . . , am−n′(z) such that t(x) divides p(x, z), where

p(x, z) =
(∑m

k=1 ak(z) · vk(x)
)
·
(∑m

k=1 ak(z) · wk(x)
)
−
(∑m

k=1 ak(z) · yk(x)
)

The degree of Q is said to be deg(t(x)).

F The Joye-Libert cryptosystem

What follows is the description of the linearly homomorphic encryption scheme over Z2k by Joye
and Libert [JL13], which we use to build our secure encoding in Section 6.1.

KeyGen(1κ, k): According to the security parameter κ, choose two random primes, p, q satisfying
the equivalences:

p ≡ 1 (mod 2k) and q ≡ 3 (mod 4).

For simplicity, pick p = 2kp′ + 1 and q = 2q′ + 1, where p′, q′ are primes. Let g be a random
generator of both Z∗p and Z∗q , N = p · q and µ = p′. We define pk = (g, k,N) and sk = µ.

Encpk(m): Given m ∈ Z2k , sample x← Z∗N and output gm · x2k (mod N).
Decsk(C): Compute d = Cµ mod p and then retrieve m bit by bit as follows. Observe that d = Cµ

mod p = (gµ)m mod p, where gµ is an element of order 2k in Z∗p. Let m =
∑k−1

j=0 2jmj , mj ∈
{0, 1}. We can compute its least significant bit m0 by computing d2

k−1
mod p. Set m0 = 0 if

d2
k−1

mod p = 1, and 1 otherwise. After computing mi−1, . . . ,m0, compute mi as follows: Set
mi = 0 if and only if (

d

(gµ(
∑i−1
j=0 2

jmj))

)2k−i−1

= 1 mod p

G Some useful QRPs

While the QRP construction described in Section 3 would allow us to easily describe arithmetic
circuits over e.g. Z2k or the rings Rq used for homomorphic encryption, in practical scenarios one
is also interested in performing bit-wise operations such as comparisons and, as it is specially the
case in some levelled HE schemes, modular reduction.
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G.1 Bit Decomposition Gate

We show how to build a QRP which, given an input a ∈ R, gives as an output wires holding
values ai ∈ {0, 1} which correspond to the ‘binary representation’ of a. Our following description is
specialized for R = GR(2k, d), but it can be easily adapted to other rings such as those employed
in Section 7.1.

We provide two different versions of this gate. For the first one, nothing is known about a,
whereas in the second case, better efficiency is achieved by assuming that a ∈ Z2k . When interested
in computation over Z2k only, the former version of the gate where potentially a /∈ Z2k is necessary
only if the prover is providing some inputs to the QRP in a zero-knowledge way. Nevertheless, once
the inputs from the prover have been asserted to be elements of Z2k , one can use the more efficient
Z2k -splitter gate during the rest of the circuit. The provers inputs can be tested to be from Z2k

either by inspection when those are provided in the clear, or when they are provided in ZK, by e.g.
applying the general R-splitter gate to them and outputting to the verifier all the wires that should
be always equal to zero in a ‘binary representation’ of an element in Z2k ⊂ R. Let A ⊂ R be the
exceptional set.

1. Z2k -splitter gate: This mini-QRP has one input wire, holding a ∈ Z2k , and k output wires
holding a1, . . . , ak ∈ {0, 1} such that a =

∑k
i=1 2i−1ai. Label the input wires as 1, . . . , k and

the output wire as k + 1. Let t(x) = (x − r)
∏k
i=1(x − ri), where r, r1, . . . , rk ∈ A are pairwise

different. In an approach similiar to Pinocchio [PHGR13], we set:

v0(r) = 0, vi(r) = 2i−1, for 1 ≤ i ≤ k, vk+1(r) = 0,

w0(r) = 1, wi(r) = 0, for 1 ≤ i ≤ k,wk+1(r) = 0,

y0(r) = 0, yi(r) = 0, for 1 ≤ i ≤ k, yk+1(r) = 1

For 1 ≤ j ≤ k:

vj(rj) = 1, vi(rj) = 0 for all i 6= j,

w0(rj) = 1, wj(rj) = −1, wi(rj) = 0 for all i 6= 0, j,

yi(rj) = 0 for all i

If (v0(x) +
∑
akvk(x)) · (w0(x) +

∑
akwk(x))− (y0(x) +

∑
akyk(x)) is divisible by t(x), then it

must be 0 at r, and therefore, by the first set of equations, this gives, a =
∑k

i=1 2i−1ai. The
second set of equations guarantee that each rj is a root, which implies, aj(1− aj) = 0. Since all
the zero divisors of R belong to the maximal ideal (2), it follows that if aj is a zero divisor then
aj ± 1 is not, and thence the only solutions for the previous equation are aj ∈ {0, 1}. Together,
these give the guarantee that all ai are bits, and are the binary decomposition of a.

2. R-splitter gate: This works essentially as the previous version of the splitter gate repeated δ
times in parallel, once for every component of R seen as a free-module of rank δ over Z2k .

G.2 Modular reduction gate

In leveled homomorphic schemes, namely capable of evaluating circuits of arbitrary size, but known
beforehand, without involving the costly bootstrapping procedure, the key tool is the modulus
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switching procedure which allows to switch a ciphertext encrypted under a modulus q to a smaller
modulus q0 in order to keep the noise level “constant”. Hence by selecting a chain of moduli
{q0, . . . , qL} long enough to perform the desired computations, bootstrapping is no longer needed.
The modulus switching allows to decrease the size of the noise of a level j > 0 ciphertext, as soon
as it becomes too important. Roughly, the idea is to drop one (or several) levels in the ladder of
moduli by scaling the ciphertext by qi/qj for i < j, which roughly scales down the noise by the
same factor.

Of special interest for the application of SNARKs over Homomorphic Encryption schemes is
the fact of having a way to compute modular reductions at a reasonable cost. We provide below a
“mod qi” gate, which has a cost of (dlog qe+ dlog qie+ 3) · d multiplication gates in the underlying
QRP over Rq, where Rq = Zq[Y ]/(f(Y )) and d = deg(f(Y )). The cost of the gate can be further
optimized to (dlog qe + dlog qie + 1) · d + 2, as we will sketch after its more expensive but simpler
to explain implementation.

Let Q = dlog qie. What our QRP will prove is the following: Given z ∈ Rq, expressed as

z =
∑d−1

`=0 z` · Y `, z` ∈ Zq, the Prover can prove that z̃ =
∑d−1

`=0 z̃` · Y `, where z̃` ≡ z` mod qi.
He does so by providing, for each ` ∈ [d], values x`, z̃`, t` ∈ Zq (where the two latter are actually
provided in a bit-decomposed manner) such that:

z̃` =

{∑Q−1
k=0 2k · z̃`,k; z̃`,k ∈ {0, 1}

z` − x` · qi
(9)

t` =

{∑dlog qe−1
k=0 2k · t`,k; t`,k ∈ {0, 1}

z̃` − qi
(10)

fz` =

dlog qe−1∑
k=Q

t`,k 6= 0 (11)

Equation (9) can be verified by a slightly optimized Bit Decomposition gate, which costs Q+ 1
multiplication gates. The purpose of this part of the circuit is proving both that z̃` is a representative
of the class z` mod qi smaller than 2k. Note that we are not done at this point, as the Prover could
be providing a value z̃` such that qi < z̃` < 2k. This is ruled out by the combination of Equations
(10) and (11), which ensure that z̃`−qi > 2k. Their cost is that of a Bit Decomposition for the former
(i.e. dlog qe+ 1 multiplication gates) and one multiplication gate for the latter. In more detail, we
check that every fz` which results form computing z̃` ≡ z` mod qi is not zero by checking whether∏
z`
fz` 6= 03.

The more efficient implementation of the “mod qi” gate, costing (dlog qe + dlog qie + 1) · d +
2 multiplication gates, can be built in almost the same way as in our previous exposition, but
“packing” each of the equality tests at the bottom part of Equations (9) and (10) into a single
equality check over Rq. More specifically, these can be implemented as:

z̃ =
d−1∑
`=0

z̃` · Y ` = z − qi · (
d−1∑
`=0

x` · Y `) (12)

3 Note that fz` , which is the sum of a few bits, will not be a zero divisor in our concrete application. One should be
careful to deal with such case in more general scenarios.
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t =
d−1∑
`=0

t` · Y ` = z̃ − qi · (
d−1∑
`=0

Y `) (13)

H Further details on SNARKs for computation over Encrypted Data

H.1 Further details on Torus encoding

Multiplying encoded elements with elements from R: We next show explicitly how our TFHE-based
encoding is R-linear homomorphic. R = Zm[Y ]/(f(Y )) is a free module over Zm of rank d, i.e. we
can find a basis for R. Let ξ be a root of f(Y ), we have that {1, ξ, . . . , ξd−1} is one of such basis. The
map φ : R→ (Zm)d, which sends b = b0 + . . .+ bd−1ξ

d−1 to φ(b) = (b0, . . . , bd−1) is an isomorphism
of Zm-modules. We will make extensive use of this isomorphism going forward.

The encoding we use is the following:

Epk : R→ (T)d

a 7→ Epk(a) = (TFHE(a0), ..., TFHE(ad−1))

For our QRPs, we wish to compute values of the form E(a ·b), where a, b ∈ R, given E(a) and b.
The problem is that E(a) ∈ (T)d, and the torus does not allow us to simply and directly compute
b ·E(a) as in previous occasions. Rather, we have to look at the R-module endomorphism ·b which
is induced by multiplication of any element of R with b, and use this to manipulate the d individual
values TFHE(a0), ..., TFHE(ad−1) ∈ T.

In a more explicit and step-by-step fashion, ·b is an R-module endomorphism and hence a Zm-
module homomorphism ·b : (Zm)d → (Zm)d. We can therefore represent this operation as follows:

·b : (Zm)d → (Zm)d

a 7→Mb · a

where Mb ∈Md×d(Zm). As a side note, in fact, Mb can be easily defined from the polynomial f(Y )
used to construct R ' (Zm)d. Our goal can now be re-stated as computing E(·b(a)), given E(a) and
b ∈ R. We are almost done, as TFHE(x) + TFHE(y) = TFHE(x+ y) and T allows for external
multiplication with elements in Z. In all formality, let Nb ∈ Md×d(Z) such that Nb ≡ Mb mod n.
We just need to compute:

Nb · E(a) = E(Nb · a) = E(Mb · a) = E(·b(a)) = E(a · b)

I Construction based on Linear-Only Encodings

We construct a zk-SNARK scheme for ring computations with efficiency close to its field-restricted
counterpart proposed in [Gro16].

Let C be an arithmetic circuit over R, with m wires and d multiplication gates. Let Q =
(t(x), {vk(x), wk(x), yk(x)}mk=0) be a QRP which computes C. We denote by Iio = 1, 2, . . . ` the
indices corresponding to the public input and public output values of the circuit wires and by
Imid = `+ 1, . . .m, the wire indices corresponding to non-input, non-output intermediate values.
Let Encode = (Gen,E) be a secure encoding scheme and A∗ ⊂ R∗ an exceptional set.

Our scheme is based on the assumption of linear-only encodings and consists in 3 algorithms
RingSNARK = (Setup,Prove,Verify) described in Figure 3.
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Setup(1κ,R) :

α, β, γ, δ ← R∗, s← A∗, (pk, sk)← Gen(1κ)

crs =
(
pk, {E(si)}d−1

i=0 , {E(βvk(s)+αwk(s)+yk(s)
γ

)}k∈Iio ,

{E(βvk(s)+αwk(s)+yk(s)
δ

)}k∈Imid , {E( s
it(s)
δ

)}d−1
i=0

)
vk = (sk, crs, s, α, β, γ, δ)
return (crs, vk)

Prove(crs, u, w)

u = (a1, . . . , a`), a0 = 1
w = (a`+1, . . . , am)
v(x) =

∑m
k=0 akvk(x)

vmid(x) =
∑
k∈Imid

akvk(x)

w(x) =
∑m
k=0 akwk(x)

wmid(x) =
∑
k∈Imid

akwk(x)

y(x) =
∑m
k=0 akyk(x)

ymid(x) =
∑
k∈Imid

akyk(x)

h(x) = (v(x)w(x)−y(x))
t(x)

fmid = βvmid(s)+αwmid(s)+ymid(s)
δ

A = E
(
α+ v(s)

)
B = E

(
β + w(s)

)
C = E(fmid + t(s)h(s)

δ
)

return π = (A,B,C)

Verify(vk, u, π)

π = (A,B,C)
A = E(Av)
B = E(Bw),
C = E(Cy)
vio(x) =

∑`
i=0 aivi(x)

wio(x) =
∑`
i=0 aiwi(x)

yio(x) =
∑`
i=0 aiyi(x)

fio = βvio(s)+αwio(s)+yio(s)
γ

F = E(fio)

Check on encodings
AB = E(α)E(β) + γF + δC

i.e.
AvBw = αβ + γfio + δCy

Fig. 3. RingSNARK Construction from Linear-only Encodings.

Theorem 9. Let R be commutative ring with identity with an exceptional subset A, and d be an
upper bound on the degree of the QRP. Assuming that the linear-only extractable assumption as
per Definition 10 holds for the encoding scheme Encode over R (and A∗), the protocol RingSNARK
described in Fig. 3 is a SNARK as per Definition 1, with soundness error 1/|A∗|.

I.1 Proof of Security

We first give a variant of the Schwartz-Zippel lemma for Laurent polynomials over rings that we
will rely on in the proof.

Lemma 12. Let A be an exceptional set. Let h(X) ∈ R[X1, X
−1
1 , . . . , Xn, X

−1
n ] where no term

in any Xi has degree less than −D or larger than D. Let us assume that h(X) is not the zero-
polynomial. Let a ∈ (A)n be chosen uniformly at random. Then

Pr[h(a) = 0] ≤ 2nD

|A|
.

Proof. We notice that f(X) :=
∏n
i=1X

D
i · h(X) is an ordinary polynomial of degree ≤ 2nD. Since

h(a) = 0 implies f(a) = 0, by the generalized Schwartz-Zippel lemma (Lemma 2), we have that

Pr[h(a) = 0] ≤ Pr[f(a) = 0] ≤ 2nD

|A|
,

finishing the proof.

We are now ready to give the security proof of our scheme RingSNARK:
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Theorem 10. Let R be commutative ring with identity with an exceptional subset A, and d be an
upper bound on the degree of the QRP. Assuming that the linear-only extractable assumption as
per Definition 10 holds for the encoding scheme Encode over R (and A∗), the protocol RingSNARK
described in Fig. 3 is a SNARK as per Definition 1, with soundness error 1/|A∗|.

Proof. Completeness. Completeness of the SNARK protocol follows by QRP completeness and
by the (statistical) correctness of the Encode scheme.
Knowledge Soundness. We will show the existence of an extrator that on same input and random
coins as A can produce a valid witness whenever the prover A outputs a valid proof. Let A be the
PPT adversary in the game for knowledge soundness (Definition 1) able to produce a proof π for
which the verification algorithm returns true. By linear-only extractable assumption 10 we can
run an extractor that gives us a vector of coefficients Aα, Aβ, Aγ , Aδ, {Ak}mk=0 and polynomials
A(x), Ah(x) of degree d−1, d−2 such that the value encoded in the proof element A can be written
as a linear combination of the initial values encoded in the crs:

Av = Aαα+Aββ+Aγγ +A(s) +
∑̀
k=0

Ak
βvk(s) + αwk(s) + yk(s)

γ
+

+
m∑

k=`+1

Ak
βvk(s) + αwk(s) + yk(s)

δ
+Ah(s)

t(s)

δ
(14)

We can write out Bw and Cy in a similar fashion. We can see the verification equation as an equality
of multivariate Laurent polynomials. By Lemma 12, A has negligible success probability unless the
verification equation holds when viewing Av, Bw and Cy as formal polynomials in indeterminates
xα, xβ, xγ , xδ, xs.

Using the verification test equations and following the same reasoning as the proof in [Gro16]
we eliminate coefficient by coefficient until we obtain:

A(x) =
m∑
k=0

akvk(x), B(x) =
m∑
k=0

akwk(x), C(x) =
m∑
k=0

akyk(x).

This implies that w = (a`+1, . . . , am) is a witness for u = (a1, . . . , a`).
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