
Proposal: Commit-and-Prove Zero-Knowledge Proof Systems and
Extensions

Daniel Benarroch1, Matteo Campanelli2, Dario Fiore3, Jihye Kim4, Jiwon Lee5, Hyunok Oh5, and
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Abstract. Commit-and-Prove Zero-Knowledge Proof systems (CP-ZKPs) [Kil89, CLOS02] generalize
zero-knowledge proofs where we prove statements about values that are committed. In this document
we propose this notion and its variants. It can be useful as a lingua franca framework because: it
emerges in a wide variety of practical applications; it may unify abstractions and simplify proofs in
cryptographic technical reports; although the notion is defined as a special case of NIZKs, some of its
efficient constructions are non-trivial. While previous editions of the ZKProof workshop have confirmed
interest in the formalization in this document, there is still significant work ahead in terms of: refining
the content of the proposal, and describing existing candidate constructions as well as general design
approaches.

1 Scope

Commit-and-Prove Zero-Knowledge Proof systems (CP-ZKPs) [Kil89, CLOS02] are a generalization
of zero-knowledge proofs in which the prover proves statements about values that are committed.

The aim of this document is to stimulate a discussion on the formalization of CP-ZKPs. As we
detail in the next section, the motivation for using CP-ZKPs is both theoretical and practical.

Following the ongoing standardization effort in the context of ZKPs [GKV+18], our goal here is
to address terminology and definitions for the notions of commitments and CP-ZKPs and mention
next steps on candidate constructions.

Status progress and next steps. This is an updated version of the proposal submitted and
discussed at the 2nd and 3rd ZKP workshop. This proposal is currently a work-in-progress with
an official working group charter 1. Previous editions of the workshop have confirmed that: there
exist relevant applications that would benefit from this approach; that practitioners should have
guidelines about how to align applications to this notion; that formalizing the latter would be
advantageous and that the one in this document may be the right approach for it.

While there has been progress from the last edition, there is still significant work ahead. With
respect to the last edition of the workshop, one milestone we achieved at the time of writing of this

1 Available here: https://hackmd.io/@dariofiore/rkXo8EBp8
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document is that of merging the vision between the commit-and-prove and SAVER working groups
(see URL in Footnote 1 for resources linking to these working groups): this document describes
both the formalization for commit-and-prove as well as for encrypt-and-prove.

Together with other members of the community we also started discussing concrete candidates
that could be standardized. We discuss some highlights in Section 6.

The next milestones involve:

– Agree on a preliminary set of goals and open the discussion to the community.
– Refine the content of the standardization draft proposal.
– Describe generic construction methodologies and specify concrete schemes for both commit-

and-prove and encrypt-and-prove proof systems.

2 Motivation

As observed in the ZKProof proceedings (Applications Track) [BCM+18], most applications of zero
knowledge proofs require the use of some commitment scheme in order to ensure the privacy and
confidentiality of the users and their data, by proving knowledge of the opening. The use of the
Commit-and-Prove (CP) paradigm has several interesting features:

– CP as a lens for authenticated data structures. If the commitment is compressing one
can distribute succinct and private representations of data that significantly reduce communi-
cation complexity and input size for verifiers (as well as their running time)2. An interesting
observation is that a special case of this scenario are authenticated data structures (in their
succinct variant) [Tam03], and in particular cryptographic primitives such as vector commit-
ments [CF13, Mer88], polynomial commitments [KZG10] and accumulators [Bd94] which are
already in use (or considered to be put in use) in combination with ZKP systems in a variety
of applications, such as for example [HBHW16, But18] . We can see these authenticated data
structures as commit-and-prove systems where we first compress a large data structure (e.g.
a vector or a set) and then prove something about its content (that a certain position has a
certain value or that does not contain a certain string).

– CP is agnostic to relations and proof systems. One can publish commitments to data
previous to generating proofs about them. For example, the identity scheme in [BCM+18]
requires that some issuer publishes a credential for the user, which will later be used to prove
some attribute; in some cases even before the statement to be proven for a specific attribute is
established. This means that, ideally, we would like to have some flexibility as to what statements
are proven on the opening of the commitment, as well as to which ZKP schemes are used for
the different statements.

– CP promotes interoperability. One can use commitments to make different proof systems
interoperable. For example, one can prove two different statements about the same commitment
using two distinct ZKP systems. This can be advantageous in order to exploit the different effi-
ciency tradeoffs of existing systems (see e.g., [AGM18, CFQ19a]), or simply because the public
parameters of the ZKP systems are generated in different points in time or by different organiza-
tions. Interoperability through time is particularly important for legacy systems: commitments
produced in the past and through a specific (legacy) commitment scheme can still be used as
inputs to proof systems that will be developed in the future.

2 We point out that if this commitment is compressing we may benefit from its use even if it is not hiding. Indeed
the verifier now just needs a “compact placeholder” to the input and this can be sufficient in some applications.
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It is important to stress that not all efficient constructions of this notion are straightforward.
Naturally, one can see proving “commitment opening and some other property” simply as a “larger
property” we are proving (and indeed the main notion we propose is defined this way modulo
some technical care). On the other hand, encoding this property directly as a larger circuit may be
highly inefficient. Related discussions and efficient solutions can be found for example in [FFG+16,
CFQ19b].

We find thus motivating to have a framework for properly building such applications and instan-
tiating the commitment schemes with the corresponding ZKP schemes. We believe that the starting
point of such a framework should be a formal definition of commitments and commit-and-prove
zero-knowledge proof systems.

Finally, we believe that standardizing the definition for CP-ZKP (and, at a later time, its
framework) offers yet one more advantage related to how we can program constraint systems. Today
there are several high-level languages that can be used to express constraints. In our experience, and
analogously to other programming languages, it would seem beneficial to have pre-defined types for
constraint system variables. These types would be common among most or all applications. The
current proposal could lead to defining the variable type commitment and opening, which could
lead to better security assurances and engineering practices.

2.1 Extensions to Encryption

So far we discussed and motivated a framework that decompose commitments and proof systems
that take commitments as inputs to a verification procedure. Similar observations lead to decom-
posing encryption and proof systems. One particular application of this is in electronic voting
[LCKO19], where parties should be able to prove knowledge of a plaintext in a rerandomizable
encryption scheme.

3 Background

The commit-and-prove approach in zero-knowledge proofs dates back to the works of Kilian [Kil89]
and Canetti et al. [CLOS02], and has been used extensively, implicitly or explicitly, in plenty of
works.

As we detail in Section 4.4, the notion of CP-ZKPs could be seen as a specialization of ZKPs by
considering languages that are parametrized by the commitment key, e.g., using informal notation,

Lck = {cx : cx opens to x and x ∈ L}

When focusing on non-interactive zero-knowledge proof systems (NIZK), in which one generates a
language-dependent CRS, there is a variety of CP-ZKP notions used in the literature, such as those
where the commitment key is generated together with the CRS, e.g., [CFH+15], and those where the
commitment key is taken as an input in the NIZK CRS generation [Lip16, EG14, CFQ19a], which
in turn include systems where the commitment key is the CRS itself (in which case the commitment
must admit a trapdoor, e.g., [EG14, Lip16]).

Given the theoretical and practical relevance of the commit-and-prove approach, we believe it is
important for the community to either agree on one or at least provide a taxonomy of the variants.

Other related work. Many of the advantages of a commit-and-prove formalization have to do
with some level of uniform representation among cryptographic primitives (e.g., all proof systems
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should be able to interact through the same type of commitment) and efficient operations over that
representation (e.g., it should be efficient to prove/verify over committed data). A different line
of work that has an analogous vision is that of structure-preserving cryptography [AFG+16] which
proposes a framework for modular cryptographic building blocks (signatures, commitments, etc.)
over bilinear groups that are interoperable and efficient.

While the proposed commit-and-prove (and encrypt-and-prove) framework in this document
formalizes a hiding encoding of the data, there have been similar formalizations of hash-and-prove
systems [FFG+16]; here we do not require zero-knowledge and we provide a binding (but not hiding)
digest of the data. We observe this is a direct special case of the framework in this document.

4 Definitions

In this section we give definitions for commitments, zero-knowledge proofs and commit-and-prove
zero-knowledge proofs. We focus on the non-interactive setting although these definitions can be
adapted to the interactive setting.

The definitions of CP-ZKPs proposed in this document are based on the ones recently used in
[CFQ19a]. Although this definition still needs to be perfectly aligned with those in the rest of the
ZKProof standardization effort, we do not necessarily mean this to be the definition but rather to
serve as a starting point for a related discussion.

Notation. We use λ ∈ N to denote the security parameter, and 1λ to denote its unary repre-
sentation. Throughout the paper we assume that all the algorithms of the cryptographic schemes
take as input 1λ, and thus we omit it from the list of inputs. For a distribution D, we denote by
x ← D the fact that x is being sampled according to D. We remind the reader that an ensemble
X = {Xλ}λ∈N is a family of probability distributions over a family of domains D = {Dλ}λ∈N. We
say two ensembles D = {Dλ}λ∈N and D′ = {D′

λ}λ∈N are statistically indistinguishable (denoted by
D ≈s D′) if 1

2

∑
x |Dλ(x) − D′

λ(x)| < negl(λ). If A = {Aλ} is a (possibly non-uniform) family of
circuits and D = {Dλ}λ∈N is an ensemble, then we denote by A(D) the ensemble of the outputs of
Aλ(x) when x← Dλ. We say two ensembles D = {Dλ}λ∈N and D′ = {D′

λ}λ∈N are computationally
indistinguishable (denoted by D ≈c D′) if for every non-uniform polynomial time distinguisher
A we have A(D) ≈s A(D′). We denote by [n] the set of integers {1, . . . , n} and by [: n] the set
{0, 1, . . . , n− 1}. We use (uj)j∈[`] to denote the tuple of elements (u1, . . . , u`).

4.1 Relations

Let {Rλ}λ∈N be a family of polynomial-time decidable relations R on pairs (x,w) where x ∈ Dx
is called the statement or input, and w ∈ Dw the witness. We write R(x,w) = 1 to denote that
R holds on (x,w), else we write R(x,w) = 0. When discussing schemes that prove statements
on committed values we assume that Dw can be split in two subdomains Du × Dω. Finally we
sometimes use an even finer grained specification of Du assuming we can split it over ` arbitrary
domains (D1 × · · · × D`) for some arity `. In our security definitions we assume relations to be
generated by a relation generator RG(1λ) that, on input the security parameter 1λ, outputs R
together with some side information, an auxiliary input auxR, that is given to the adversary. We
define RGλ as the set of all relations that can be returned by RG(1λ).
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4.2 NIZKs

We recall the definition of non-interactive zero-knowledge arguments of knowledge (NIZK, for short).

Definition 4.1 (NIZK). A NIZK for {Rλ}λ∈N is a triple of algorithms Π = (KeyGen,Prove,
VerProof) that work as follows and satisfy the notions of completeness, knowledge soundness and
zero-knowledge defined below:

– KeyGen(R) → (ek, vk): takes the security parameter λ and a relation R ∈ Rλ, and outputs a
common reference string consisting of an evaluation ek and a verification key vk.

– Prove(ek, x, w)→ π: takes an evaluation key ek for a relation R, a statement x, and a witness
w such that R(x,w) holds, and returns a proof π.

– VerProof(vk, x, π)→ b: takes a verification key vk, a statement x, and either accepts (b = 1) or
rejects (b = 0) the proof π.

Completeness. Π is complete if for any λ ∈ N, R ∈ Rλ and (x,w) such that R(x,w) = 1, it holds:

Pr[(ek, vk)← KeyGen(R), π ← Prove(ek, x, w) : VerProof(vk, x, π) = 1] = 1

Knowledge Soundness. A scheme Π is knowledge sound for RG and auxiliary input distribution
Z, denoted KSND(RG,Z) for brevity, if for every (non-uniform) efficient adversary A there exists
a (non-uniform) efficient extractor E such that Pr[GameKSND

RG,Z,A,E = 1] = negl. We say that Π is
knowledge sound if there exists benign RG and Z such that Π is KSND(RG,Z).

GameKSND
RG,Z,A,E → b

(R, auxR)←RG(1λ)

crs := (ek, vk)← KeyGen(R)

auxZ ← Z(R, auxR, crs)(
x, π

)
← A(R, crs, auxR, auxZ)

w ← E(R, crs, auxR, auxZ)

b← VerProof(vk, x, π) = 1 ∧R(x,w) = 0

Composable Zero-Knowledge. A scheme Π is composable zero-knowledge for a relation gener-
ator RG if there exists a simulator S = (Skg,Sprv) such that both following conditions hold for all
adversaries A:

Keys Indistinguishability

Pr
[

(R, auxR)← RG(1λ) , crs← KeyGen(R) : A(crs, auxR) = 1
]

≈ Pr
[

(R, auxR)← RG(1λ) , (crs, tdk)← Skg(R) : A(crs, auxR) = 1
]

Proof Indistinguishability For all (x,w) such that R(x,w) = 1,

Pr
[

(R, auxR)← RG(1λ) , (crs, tdk)← Skg(R) , π ← Prove(ek, x, w) : A(crs, auxR, π) = 1
]

≈ Pr
[

(R, auxR)← RG(1λ) , (crs, tdk)← Skg(R) , π ← Sprv(crs, tdk, x) : A(crs, auxR, π) = 1
]
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Remark 4.1 (On auxiliary inputs). In the notion of knowledge soundness defined above we consider
two kinds of auxiliary inputs, auxR generated together with the relation by RG, and auxZ that is
generated from some distribution Z that may depend on the common reference string that in turn
depends on R. Notice that although knowledge soundness is implied by a notion where auxiliary
inputs can be arbitrary, our aim is a precise formalization of auxiliary inputs; this is useful to justify
why certain auxiliary inputs should be considered benign, as required to avoid known impossibility
results [BCPR14, BP15]. Finally, we also note that our notion is also implied by SNARKs that
admit black-box extractors (as may be the case for those relying on random oracles [Mic00]).

Remark 4.2 (On definition of zkSNARKs). One can define zero-knowledge succinct non-interactive
arguments (zkSNARKs) as NIZKs enjoying an additional property, succinctness, i.e. if the running
time of VerProof is poly(λ+ |x|+ log |w|) and the proof size is poly(λ+ log |w|).

Remark 4.3 (On notions of knowledge-soundness). Above we use a non black-box definition of
extractability. Although this is virtually necessary in the case of zkSNARKs, NIZKs can also satisfy
stronger notions of (knowledge) soundness.

4.3 Commitment Schemes

We recall the notion of non-interactive commitment schemes.

Definition 4.2 (Commitment Scheme). A commitment scheme is a triple of algorithms Com =
(Setup,Commit,VerCommit) that work as follows and satisfy the notions of correctness, binding and
hiding defined below.

– Setup(1λ) → ck: takes the security parameter λ and outputs a commitment key ck. This key
includes descriptions of the input space D, commitment space C and opening space O.

– Commit(ck, u) → (c, o): takes the commitment key ck and a value u ∈ D, and outputs a com-
mitment c and an opening o.

– VerCommit(ck, c, u, o) → b: takes as input a commitment c, a value u and an opening o, and
accepts (b = 1) or rejects (b = 0).

A commitment scheme Com = (Setup,Commit,VerCommit) must satisfy the following properties:

Correctness. For all λ ∈ N and any input u ∈ D we have:

Pr
[

ck← Setup(1λ) , (c, o)← Commit(ck, u) : VerCommit(ck, c, u, o) = 1
]

= 1

Binding. For every polynomial-time adversary A

Pr

 ck← Setup(1λ)

(c, u, o, u′, o′)← A(ck)
:

VerCommit(ck, c, u, o) = 1

VerCommit(ck, c, u′, o′) = 1

u 6= u′

 = negl(λ)

Hiding. For ck← Setup(1λ) and every values u, u′ ∈ D, the following two distributions are statis-
tically close: Commit(ck, u) ≈ Commit(ck, u′).
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Remark 4.4. In the literature there exists more than one syntax for commitment schemes. For
example, some definitions replace the predicate VerCommit above with a procedure that, given
a commitment c and some opening information o, outputs the committed value u (or ⊥ when
appropriate); or other definitions define Commit(ck, u; r) as a deterministic function where the input
r is the randomness, which also acts as opening information, and checking that c is a commitment
for message u and opening r consists simply in recomputing Commit(ck, u; r).

4.4 Definition of Commit-and-Prove NIZKs

In a nutshell, a commit-and-prove NIZK (CP-NIZK) is a NIZK that can prove knowledge of (x,w)
such that R(x,w) holds with respect to a witness w = (u, ω) such that u opens a commitment
cu. Our formal definitions below essentially add some syntactic sugar to this idea in order to
explicitly handle relations in which the input domain Du is more fine grained and splits over
` subdomains. We call these subdomains commitment slots following [CFQ19a]. Intuitively, each
item in the commitment slot represents an input (or a vector of inputs) to the relation which the
prover has previously committed to. We assume that the description of the splitting is part of R’s
description.

Definition 4.3 (CP-NIZK). Let {Rλ}λ∈N be a family of relations R over Dx × Du × Dω such
that Du splits over ` arbitrary domains (D1 × · · · × D`) for some arity parameter ` ≥ 1. Let
Com = (Setup,Commit,VerCommit) be a commitment scheme (as per Definition 4.2) whose input
space D is such that Di ⊂ D for all i ∈ [`]. A commit-and-prove NIZK for Com and {Rλ}λ∈N is a
NIZK for a family of relations {RCom

λ }λ∈N such that:

– every R ∈ RCom is represented by a pair (ck, R) where ck ∈ Setup(1λ) and R ∈ Rλ;

– R is over pairs (x,w) where the statement is x := (x, (cj)j∈[`]) ∈ Dx × C`, the witness is w :=

((uj)j∈[`], (oj)j∈[`], ω) ∈ D1 × · · · × D` ×O` ×Dω, and the relation R holds iff∧
j∈[`]

VerCommit(ck, cj , uj , oj) = 1 ∧R(x, (uj)j∈[`], ω) = 1

Furthermore, when we say that CP is knowledge-sound for a relation generator RG and auxiliary
input generator Z (denoted KSND(RG,Z), for short) we mean it is a knowledge-sound NIZK for
the relation generator RGCom(1λ) that runs ck← Setup(1λ) and (R, auxR)← RG(1λ), and returns
((ck, R), auxR).

Explicit simplified syntax for a CP-NIZK. We denote a CP-NIZK as a triple of algorithms
CP = (KeyGen,Prove,VerProof). For ease of exposition, an explicit syntax for CP’s algorithms is as
follows.

KeyGen(ck, R)

returns crs := (ek, vk)

Prove(ek, x, (cj)j∈[`], (uj)j∈[`], (oj)j∈[`], ω)

returns π

VerProof(vk, x, (cj)j∈[`], π)

returns b ∈ {0, 1}
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Comparing with existing definitions In the context of non-interactive proof systems, a variety
of notions of commit-and-prove schemes have appeared explicitly in a few works in the literature
[Fuc11, EG14, CFH+15, Lip16, CFQ19a]. The CP-NIZK notion given above is the one that aims to
make the proof system and the commitment scheme as decoupled as possible (and in particular it
makes less requirements on the commitment). It is in fact a specialization of the NIZK notion when
considering specific families of relations that include verifying openings of commitments.

One difference with all the other definitions [Fuc11, EG14, CFH+15, Lip16] is that ours does
not require the commitment to be a trapdoor commitment. In addition to this, when comparing
with the definitions of Fuchsbauer [Fuc11] and Escala and Groth [EG14], we leave the possibility
that the proof system has its own common reference string and that the relation to be proven takes
other inputs in addition to those that are explicitly committed. Our notion is closer to the one given
by Lipmaa [Lip16] (with the exception that again we do not need commitments to be trapdoor).

Finally, in comparison to the notion of commit-and-prove SNARKs defined in [CFH+15] for
the Geppetto scheme, the main differences are the following. First, our commitment key can be
generated without fixing a priori a relation (or a set of relations, e.g., a multi-QAP). Second, in
the model of [CFH+15] one needs to commit to data using a commitment key corresponding to a
specific portion of the input (in their lingo a “bank”), whereas in our model one can just commit
to a vector of data, and only at proving time one assigns that data to a specific input slot. Third,
in our notion the commitment scheme does not need to be a trapdoor commitment.

5 Encrypt-and-Prove

Here we describe a variant of commit-and-prove where we can prove/verify over encrypted data.

5.1 Motivation

Encrypt-and-Prove Zero-Knowledge Proofs (EP-ZKP) combine encryption and (non-interactive)
zero-knowledge proofs; it was proposed originally in the 3rd ZKProof Workshop [LCKO19]. In this
framework one can encrypt a message u to a ciphertext c and prove that the message belongs to
a language L while also proving knowledge of the randomness that encrypts that same message to
the ciphertext. This can be checked by a verifier that only holds a ciphertext c.

The formalization shares much with that of commit-and-prove (as well much of its motivation),
but there are a few points of divergence. Although none of them on its own is major, together they
justify a separate definition:

– its setup involves secret keys and is performed by a specific user, in contrast to a single setup
with a public commitment key shared by everybody;

– while commitments are required to be binding, we may not require ciphertexts to be. From the
notion of encryption above we require only indistinguishability under chosen plaintext attack
(IND-CPA). Binding can be seen an extra property. We stress, however, that: this property is
necessary in the case in which we use two EP-NIZKs to compose proofs on the same data; many
common encryption schemes, ElGamal among others, are binding.

– in some protocols, a public-key infrastructure may give substantially different properties than
commitments. This is better explained with an example where using encrypt-and-prove in a
protocol makes it immediately obvious who has access to the data and who does not: if we
broadcast an encryption of data x through the public key of user U—together with a proof over
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the encryption of the data—we know this will leak the property to everybody as well as the
fact that the data is revealed to U . We can achieve this through a commitment scheme but less
immediately and perhaps more inefficiently.

5.2 Preliminaries on Public-Key Encryption

We recall the definition of public-key encryption. To synchronize the notation, we denote the mes-
sage as u, same as in the definition of commitment scheme.

Definition 5.1 (Public-Key Encryption Scheme). A public-key encryption scheme is a triple
of algorithms Πenc = (KeyGen,Encrypt,Decrypt) that work as follows satisfying the notions of cor-
rectness and indistinguishability under chosen plaintext attack (IND-CPA) defined below.

– KeyGen(1λ) → (sk, pk): takes the security parameter λ as an input and outputs a secret key sk
and a public key pk including descriptions of the input space D and ciphertext space CT .

– Encrypt(pk, u; r) → ct: takes the public key pk and a message u ∈ D as inputs and outputs a
corresponding ciphertext ct with respect to an auxiliary random r.

– Decrypt(sk, ct) → u: takes the secret key sk and a ciphertext ct as inputs and outputs a corre-
sponding message u.

Correctness. For all λ ∈ N and any input u ∈ D we have:

Pr
[

(sk, pk)← KeyGen(1λ) , ct← Encrypt(pk, u; r) : Decrypt(sk, ct) = u
]

= 1

Indistinguishability (IND-CPA). For every polynomial-time adversary A:

Pr
[

(sk, pk)← KeyGen(1λ) , (u0, u1)← A(pk) , ct← Encrypt(pk, u0; r) : A(pk, ct, u0, u1) = 0
]

≈ Pr
[

(sk, pk)← KeyGen(1λ), (u0, u1)← A(pk) , ct← Encrypt(pk, u1; r) : A(pk, ct, u0, u1) = 0
]

5.3 Definition of Encrypt-and-Prove NIZKs

Similar to the CP-NIZK in Definition 4.3, an encrypt-and-prove NIZK (EP-NIZK) is a NIZK that
can prove knowledge of (x,w) such that R(x,w) holds with respect to a statement x = (y, ct) and
a witness w = (u, ω) such that ct decrypts to a message u. The input domain Du splits over `
subdomains, which we call as encryption slots; each item in the encryption slot represents an input
(or a vector of inputs) to the relation which the prover has previously encrypted.

Definition 5.2 (EP-NIZK). Let {Rλ}λ∈N be a family of relations R over Dx × Du × Dω such
that Du splits over ` arbitrary domains (D1 × · · · × D`) for some arity parameter ` ≥ 1. Let
Πenc = (KeyGen,Encrypt,Decrypt) be an encryption scheme (as per Definition 5.2) whose input
space D is such that Di ⊂ D for all i ∈ [`]. An encrypt-and-prove NIZK for Πenc and {Rλ}λ∈N is
a NIZK for a family of relations {RΠenc

λ }λ∈N such that:

– every R ∈ RΠenc is represented by a pair (pk, R) where pk ∈ KeyGen(1λ) and R ∈ Rλ;
– R is over pairs (x,w) where the statement is x := (x, (ctj)j∈[`]) ∈ Dx × CT `, the witness is

w := ((uj)j∈[`], ω) ∈ D1 × · · · × D` ×Dω, and the relation R holds iff∧
j∈[`]

Encrypt(pk, u; r) = ct ∧R(x, (uj)j∈[`], ω) = 1
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Furthermore, when we say that EP is knowledge-sound for a relation generator RG and auxiliary
input generator Z (denoted KSND(RG,Z), for short) we mean it is a knowledge-sound NIZK for
the relation generator RGΠenc(1

λ) that runs (sk, pk) ← KeyGen(1λ) and (R, auxR) ← RG(1λ), and
returns ((pk, R), auxR).

Explicit simplified syntax for a EP-NIZK. We denote a EP-NIZK as a tuple of algorithms
EP = (KeyGen,Prove,VerProof). For ease of exposition, an explicit syntax for EP’s algorithms is as
follows.

KeyGen(pk, R)

returns crs := (ek, vk)

Prove(ek, x, (ctj)j∈[`], (uj)j∈[`], ω)

returns π

VerProof(vk, x, (ctj)j∈[`], π)

returns b ∈ {0, 1}

Beyond Commit-(or Encrypt-)and-Prove. We can think of commit-and-prove and encrypt-
and-prove as a framework for zero-knowledge over augmented relations. We augment these relations
with cryptographic primitives (commitment and encryption) that have a somewhat special role. One
could push a similar line of formalization even further:

– one could have proof systems that support both commitments and encryptions as having a
special role (roughly, a “(commit-or-encrypt)-and-prove”);

– one could augment relations with cryptographic primitives beyond encryption and commit-
ments, such as signatures. One could have a “sign-and-prove” framework able to efficiently
prove VerifySignature(pk, σ,m) over some committed (or encrypted) private data m. Something
similar could be done for non-hiding cryptographic primitives such as accumulators and variants
of vector commitments.

The observations above should be considered parenthetical; the formalizations we mention are
currently out of the scope of this proposal.

6 Potential Candidates for the Reference Standard

Some candidate commitment schemes to standardize are the following:

– Pedersen commitments over different types of distributions (e.g. uniform distribution, Lagrange
polynomials evaluated in a point);
• It will possibly be required to standardize preliminaries necessary for Pedersen commit-

ments: groups, basic cryptographic properties we require in them, how to sample binding
commitment keys safely.

– SNARK-friendly commitment schemes, for example the JubJub curve used in ZCash;
– hashing through random-oracle or arbitrary collision-resistant hash functions;
– Merkle trees and some vector commitments in general.

Some candidate commit-and-prove schemes to standardize are the following:

– Sigma protocols;
– Groth-Sahai [GS08];
– Groth16 [Gro16] with SNARK-friendly commitment schemes;
– LegoGroth16 [CFQ19b].
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A Other Flavors of Commit/Encrypt-and-Prove NIZKs

In this section we describe a variant of NIZKs (proposed in [CFQ19a]) that lies in between standard
NIZKs and CP-NIZKs. We believe it is worth mentioning since it captures a class of existing schemes
that are not explicitly commit-and-prove but they implicitly have a weak form of the commit flavor.

This class of schemes are called NIZKs with commit-carrying proofs (or commit-carrying NIZKs,
cc-NIZKs for short). In a nutshell, a cc-NIZK is like a NIZK in which the proof contains a commitment
to the portion u of the witness. Formalizing this idea requires to make explicit the commitment
scheme associated to the NIZK, as well as the commitment key that is part of the common reference
string. In [CFQ19a] Campanelli, Fiore and Querol discuss how many of the existing NIZK construc-
tions satisfy this property. In particular, this holds for popular zkSNARKs like [Gro16] They also
show how cc-NIZKs can be lifted to become full fledged, composable, CP-NIZKs.

Definition A.1 (cc-NIZK). A cc-NIZK is a tuple ccΠ of algorithms working as follows:

– KeyGen(R) → (ck, ek, vk): the key generation takes as input the security parameter λ and a
relation R ∈ Rλ, and outputs a common reference string that includes a commitment key ck,
an evaluaton key ek and a verification key vk.

– Prove(ek, x, w)→ (π, c; o): the proving algorithm takes as input an evaluation key ek, a statement
x and a witness w := (u, ω) such that the relation R(x, u, ω) holds, and it outputs a proof π, a
commitment c and an opening o such that VerCommit(ck,c,u,o) = 1.

– VerProof(vk, x, c, π)→ b: the verification algorithm takes a verification key vk, a statement x, a
commitment c, and either accepts (b = 1) or rejects (b = 0) the proof π.

– VerCommit(ck, c, u, o)→ b: the commitment verification algorithm takes as input a commitment
key ck, a commitment c, a message u and an opening o and accepts (b = 1) or rejects (b = 0).

Completeness. ccΠ is complete if for any λ ∈ N, R ∈ Rλ and (x,w) such that R(x,w), it holds:

Pr
[

(ck, ek, vk)← KeyGen(R) , (c, π; o)← Prove(ek, x, w) : VerProof(vk, x, c, π)
]

= 1

Knowledge Soundness. Let RG be a relation generator such that RGλ ⊆ Rλ. ccΠ satisfies
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knowledge soundness for RG and auxiliary input distribution Z, or ccKSND(RG,Z), if there exists
a (non-uniform) efficient extractor E that for every (non-uniform) efficient adversary A is such
that Pr[GameccKSND

RG,Z,A,E = 1] = negl. We say that ccΠ is knowledge sound if there exist benign RG
and Z such that ccΠ is ccKSND(RG,Z).

GameccKSND
RG,Z,A,E → b ∈ {0, 1}

(R, auxR)←RG(1λ)

crs := (ck, ek, vk)← KeyGen(R)

auxZ ← Z(R, auxR, crs)(
x, c, π

)
← A(R, crs, auxR, auxZ)(

u, o, ω
)
← EA(R, crs, auxR, auxZ)

b← VerProof(vk, x, c, π) = 1 ∧ (VerCommit(ck, c, u, o) = 0 ∨R(x, u, ω) = 0)

Composable Zero-Knowledge. A scheme ccΠ is composable zero-knowledge for a relation
generator RG if for every adversary A there exists a simulator S = (Skg,Sprv) such that both
following conditions hold for all adversaries A:

Keys Indistinguishability.

Pr
[

(R, auxR)← RG(1λ) , crs← KeyGen(R) : A(crs, auxR) = 1
]

≈ Pr
[

(R, auxR)← RG(1λ) , (crs, tdk)← Skg(R) : A(crs, auxR) = 1
]

Proof Indistinguishability. For all (x,w) such that R(x,w) = 1,

Pr
[
(R, auxR)← RG(1λ), (crs, tdk)← Skg(R), (c, π; o)← Prove(ek, x, w) : A(crs, auxR, c, π) = 1

]
≈ Pr

[
(R, auxR)← RG(1λ), (crs, tdk)← Skg(R), (c, π)← Sprv(crs, tdk, x) : A(crs, auxR, c, π) = 1

]
Binding. ccΠ is binding if for every polynomial-time adversary A the following holds:

Pr

 (R, auxR)← RG(1λ)

(ck, ek, vk)← KeyGen(R)

(c, u, o, u′, o′)← A(R, crs, auxR)

:

VerCommit(ck, c, u, o) = 1

VerCommit(ck, c, u′, o′) = 1

u 6= u′

 = negl(λ)

Remark A.1. While our definitions consider the case where the proof contains a commitment to a
portion u of the witness w = (u, ω), notice that this partition of the witness is arbitrary and thus
this notion also captures those constructions where the commitment is to the entire witness if one
thinks of a void ω.

Remark A.2. It is possible to define analogous notions for encrypt-and-prove: encryption-carrying
NIZKs, (i.e. ec-NIZK).
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