
SoK: Lifting Transformations for Simulation
Extractable Subversion and Updatable SNARKs?

Behzad Abdolmaleki1, Sebastian Ramacher2, and Daniel Slamanig2

1 University of Tartu, Estonia
behzad.abdolmaleki@ut.ee

2 AIT Austrian Institute of Technology, Austria
{sebastian.ramacher, daniel.slamanig}@ait.ac.at

Abstract. Zero-knowledge proofs and in particular succinct non-inter-
active zero-knowledge proofs (so called zk-SNARKs) are getting increas-
ingly used in real-world applications, with cryptocurrencies being the
prime example. Simulation extractability (SE) is a strong security no-
tion of zk-SNARKs which informally ensures non-malleability of proofs,
which is considered highly important in practical applications. Another
problematic issue for the practical use of zk-SNARKs is the requirement
of a fully trusted setup, as especially for large-scale decentralized applica-
tions finding a trusted party that runs the setup is practically impossible.
Quite recently, the study of approaches to relax or even remove the trust
in the setup procedure, and in particular subversion as well as updatable
zk-SNARKs (with latter being the most promising approach), has been
initiated and received considerable attention since then. Unfortunately,
so far SE-SNARKs with aforementioned properties are only constructed
in an ad-hoc manner and no generic techniques are available.
In this SoK paper we present the state-of-the-art in generic techniques to
obtain SE subversion and updatable SNARKs. In particular, we present
a revisited version of the lifting technique due to Kosba et al. (called
C∅C∅). This revisited version called OC∅C∅ explores the design space
of many recently proposed SNARK- and STARK-friendly symmetric-
key primitives. While C∅C∅ and OC∅C∅ are compatible with subversion
SNARKs, they are not compatible with updatable SNARKs. Then, we
present another lifting transformation called Lamassu, which is build
upon key-homomorphic signatures as well as so called updatable sig-
natures. Lamassu preserves the subversion and in particular updatable
properties of the underlying zk-SNARK. Finally, we present an com-
prehensive comparison of these lifting transformations with ad-hoc tech-
niques as well as a discussion of many aspects regarding the instantiation
of the techniques.

1 Introduction

Zero-knowledge (ZK) proofs were introduced by Goldwasser, Micali and Rack-
off [GMR85] more than 3 decades ago. They represent a cryptographic proto-
col between two parties called the prover and the verifier, with the goal that
? This paper is based on and contains a significant part of the results in [ARS20].

the prover convinces the verifier of the membership of a word x in any lan-
guage in NP without revealing any information about the witness w certifying
language membership of word x. Besides this zero-knowledge property, such a
system needs to provide soundness, i.e., it must be infeasible for the prover to
provide proofs for words outside of the language. While ZK proofs in general
may require many rounds of interaction, a variant highly relevant to practical
applications are non-interactive zero-knowledge (NIZK) proofs [BFM88]. They
require only a single round, i.e., the prover outputs a proof which can then
be verified by anybody. (NI)ZK plays a central role in the theory of cryptog-
raphy and meanwhile increasingly finds its way into practice.3,4,5 Important
applications are electronic voting [SK95, DGS03, Gro10b], anonymous creden-
tials [Cha86, CL01, CL03, CL04, BCC+09, CKL+16, FHS19], and group sig-
natures [Cv91, ACJT00, BBS04, DP06, BCC+16, DS18], including widely de-
ployed schemes such as direct anonymous attestation (DAA) [BCC04, CCD+17]
used in the Trusted Platform Module (TPM) or Intel’s Enhanced Privacy ID
(EPID) [BL09], as well as many other applications that require balancing privacy
and integrity (cf. [FPS+18]). They are also a core building block of verifiable com-
putation [GGP10, GGPR13, PHGR13, BCG+18] and in the increasingly popular
domain of privacy-respecting cryptocurrencies [BCG+14, CGL+17], smart con-
tracts [KMS+16] and self-sovereign identity systems [MGGM18]. Latter arguably
represent the most popular real-world applications of zero-knowledge nowadays,
where it sees deployments in systems such as Zcash, Ethereum or sovrin.

A challenging issue, particularly important in context of blockchains, is that
users need to download and verify the state of the chain. Thus, small proof sizes
and fast verification are important criteria for the practical use of ZK proofs.
These desired features are provided by zero-knowledge Succinct Non-interactive
ARguments of Knowledge (zk-SNARKs)6, which are NIZK proofs in which
proofs as well as the computation of the verifier are succinct and ideally represent
a small constant amount of space and computation respectively. Additionally,
they satisfy a stronger notion of soundness called knowledge soundness, which
guarantees that if an adversarial prover comes up with a proof that is accepted
by the verifier, then there exists an efficient extractor which given some secret in-
formation can extract the witness. A combined effort of a large number of recent
research works [Gro10a, Lip12, GGPR13, PHGR13, Lip13, DFGK14, Gro16] (to
only mention a few) has made it possible to construct very efficient zk-SNARKs
for both the Boolean and the Arithmetic Circuit-SAT and thus for NP. The
3 ZKProof (https://zkproof.org/) being the most notable industry and academic
initiative towards a common framework and standards in the field of zero-knowledge
has been founded in 2018.

4 Zero-knowledge proofs are on the rise in Gartners’ Hype Cycle for Privacy 2019,
cf. https://www.gartner.com/en/documents/3947373/hype-cycle-for-privacy-
2019.

5 MIT technology review named zk-SNARKS as one of the “10 Breakthrough Technolo-
gies of 2018” cf. https://www.technologyreview.com/lists/technologies/2018/.

6 We note that we might drop the zk and simply write SNARK occasionally, though
we are always talking about zk-SNARKs.

2

https://zkproof.org/
https://www.gartner.com/en/documents/3947373/hype-cycle-for-privacy-2019
https://www.gartner.com/en/documents/3947373/hype-cycle-for-privacy-2019
https://www.technologyreview.com/lists/technologies/2018/

most efficient known approach for constructing zk-SNARKs for the Arithmetic
Circuit-SAT is based on Quadratic Arithmetic Programs (QAPs) [GGPR13],
where the prover builds a set of polynomial equations that are then checked
by the verifier by using a small number of pairings. The current interest in
zk-SNARKs is significant and recently first modular frameworks to efficiently
compose zk-SNARKs [CFQ19] and also first important steps towards realiz-
ing zk-SNARKs from conjectured post-quantum secure assumptions have been
made [GMNO18, BBC+18]. We note that in this work we do not consider re-
cent NIZK proofs that allow larger proof sizes, e.g., logarithmic in the witness
size, such as Bulletproofs [BBB+18] or STARKs [BBHR19] but do not require a
trusted setup. The currently most efficient zk-SNARK for Arithmetic Circuit-
SAT was proposed by Groth [Gro16], who proved it to be knowledge-sound in
the generic bilinear group model. In Groth’s zk-SNARK, a proof consists of only
3 bilinear group elements and the verifier has to check a single pairing equation.

Strong security for zk-SNARKs. For practical applications of NIZKs even
stronger security notions than soundness and knowledge soundness, called sim-
ulation soundness (SS) and simulation knowledge soundness (or simply simu-
lation extractability or SE) [Sah99, Sah01]), are required. Informally, these no-
tions require soundness and knowledge soundness respectively to hold even if
an adversary is allowed to see an arbitrary number of simulated proofs (which
she can obtain adaptively on words of her choice). Firstly, these properties
are important if NIZKs are used within larger cryptographic protocols and
in particular if they are modeled and analyzed in the universal composabil-
ity (UC) framework [Can01], as frequently used in blockchain-related protocols
(e.g., [JKS16, CDD17, KKKZ19, FMMO19] to name a few). Secondly, NIZKs
not satisfying this strong security may face severe threats when used in applica-
tions. Therefore, let us informally recall what this property does. It guarantees
that proofs are non-malleable in a way that one can neither obtain another valid
proof for the same word nor a new proof for a potentially related word from a
given proof. Now, let us assume the typical blockchain setting where proofs are
incorporated into the state of the blockchain via transactions (e.g., as in Zcash).
This means that anyone could take a proof π and obtain from it another new
proof π′ for the same word and could advertise it as its own proof (as π′ 6= π).
This is what is often called man-in-the-middle attacks in context of NIZKs and
SNARKs (cf. [GM17]). Even worse, it might be possible to obtain from a proof
π another proof π′ for another word x′ 6= x (in the same language). For example,
if π proves that 100$ are transferred from A to B with transaction ID = id, π′
might transfer 1000$ from A to B with new ID = id′, which can be a devastating
attack in systems deployed in the real-world. In fact, ECDSA signature malleabil-
ity already enabled an attack on Bitcoin that is suspected to have caused a loss
of over $ 30 million.7 Therefore, to avoid such attacks in zk-SNARKs based cryp-

7 https://www.coindesk.com/study-finds-mt-gox-lost-386-bitcoins-due-
transaction-malleability

3

https://www.coindesk.com/study-finds-mt-gox-lost-386-bitcoins-due-transaction-malleability
https://www.coindesk.com/study-finds-mt-gox-lost-386-bitcoins-due-transaction-malleability

tocurrencies, non-malleability of the proofs is of utmost importance. All these
problems are mitigated by the use of simulation-extractable (SE) zk-SNARKs.

Simulation soundness and simulation extractability can be added generically
to any NIZK. Compilers for the former are usually inspired by [Sah01, Gro06]
and basically use the idea of extending the language to an OR language where
the trapdoor for the OR part can be used to simulate proofs. Extractability
can be obtained by additionally encrypting the witness under a public key
in the common reference string (CRS) and prove correct encryption [DP92].
The most prominent compiler that exactly follows the ideas outlined before is
the C∅C∅ framework [KZM+15] (e.g., used in [AB19, Bag19] and most promi-
nently in the celebrated Hawk paper [KMS+16]). In addition to generic com-
pilers, Groth and Maller in [GM17] initiated the study of ad-hoc constructions
of SE zk-SNARKs. This work continued in [BG18] by extending Groth’s zk-
SNARK [Gro16] in a non black-box way to obtain SE. There is also other recent
work in this direction proposing other ad-hoc zk-SNARKs with these properties
(cf. [KLO19, Lip19]). Beyond the C∅C∅ framework, which, given the progress in
the field of SNARKs (such as universal CRS) and SNARK-friendly primitives,
is already quite outdated, there is no work towards lifting zk-SNARKs to SE
zk-SNARKs generically.

Trust in CRS generation. Another important aspect for practical applica-
tions of zk-SNARKs is the question of the generation of the required common
reference string (CRS) [BFM88], a structured random string available to the
prover and the verifier. While the CRS model is widely accepted, one has to be
very careful to ensure that the CRS has been created honestly, meaning that
no one knows the associated trapdoor which allows to break zero-knowledge or
soundness. In theory, it is simply assumed that some trusted party will per-
form the CRS generation, but such a party is hard to find in the real-world.
After the Snowden revelations, there has been a recent surge of interest in con-
structing cryptographic primitives and protocols secure against active subversion
and the CRS generation is exactly one of those processes where subversion can
happen. In [BFS16], Bellare, Fuchsbauer and Scafuro tackled this problem for
NIZK proofs by studying how much security one can still achieve when the
CRS generator cannot be trusted. They proved several negative and positive
results. In particular, they showed that it is impossible to achieve subversion
soundness and (even non-subversion) zero knowledge simultaneously. However,
subversion zero-knowledge can be achieved. Later, this notion has also be con-
sidered for SNARKs [ABLZ17, Fuc18] and used within practical applications
in cryptocurrencies [CGGN17, Fuc19]. For deployed systems such as Zcash and
Ethereum, instead of building them on top of subversion-resistant zk-SNARKs,
they followed an alternative route to reduce the trust put in the CRS generation.
Following a generic method to implement the CRS generation within a secure
multi-party computation (MPC) protocol [BCG+15], the CRS for Pinocchio zk-
SNARKs [PHGR13] was generated in a large “ceremony” [BGG19]. Coinciden-
tally, they end up with a subversion-resistant zk-SNARK with a polynomial
error even in the case where all parties are corrupted, and subversion soundness

4

as long as at least one party is honest. While this is an important achieve-
ment, MPC protocols for such tasks in practice are complicated and expensive
procedures, requiring much effort besides the technical realization. Thus, more
practical solutions are desirable.

Quite recently, to overcome this problem Groth et al. [GKM+18] proposed
the notion of a so-called updatable CRS, where everyone can update a CRS
and there is a way to check correctness of an update. Here, zero-knowledge
holds in the face of a malicious CRS generator and the verifier can trust the
CRS (soundness holds) as long as one operation, either the creation of the CRS
or one update, have been performed honestly. So the verifier could perform
this update operation on its own and then send the CRS to the prover. This
updatable setting thus seems much more practical than using MPC protocols, it
is more promising than the subversion setting (as it overcomes the impossibility
of subversion soundness), and thus has recently attracted lots of researchers
studying approaches to realize updatable zk-SNARKs (cf. [MBKM19, GR19,
KLO19, CHM+19]).

1.1 Outline

(Revisiting) C∅C∅. We first present the C∅C∅ lifting technique [KZM+15] to
generically obtain SE-SNARKs from SNARKs. We discuss the concrete instan-
tiation in [KZM+15] and point to efficiency problems and problems regard-
ing provable security of this instantiation. Then, we extensively investigate al-
ternative provably secure instantiations of their techniques by exploring the
design space of many recently proposed SNARK- and STARK-friendly sym-
metric primitives including the most recent proposals Poseidon [GKK+19] as
well as Vision and Rescue [AABS+19]. As these primitives are, however, all
very recent and their cryptanalysis either still needs to start or has only re-
cently started [ACG+19, LP19, Bon19, BBUV19], confidence in their proposed
security is far from certain. Nevertheless, we provide concrete recommenda-
tions for the selection of primitives and provide lower bounds for their effi-
ciency based on the currently available parameters. Additionally, we also pro-
pose a more conservative instantiation based on LowMC [ARS+15], which is
the oldest of these proposals and has already received independent cryptanaly-
sis [DEM16, BDD+15, DLMW15, RST18]. In comparison to the original C∅C∅
framework, the revisited C∅C∅ framework (dubbed OC∅C∅) yields an improve-
ment by a factor 10.4x in the number of rank-1 constraints with a conservative
choice of symmetric primitives, whereas the most aggressive choice yields an im-
provement by up to a factor 55.4x.

Lamassu Framework. We then discuss the Lamassu [ARS20] framework that is
based on completely different cryptographic primitives. In particular, it is based
on the ideas of Derler and Slamanig [DS19] using the notion of key-homomorphic
signatures and thus only requires signature schemes. It allows instantiations
based on well studied and widely used signature schemes such as ECDSA or
EC-Schnorr. Also for Lamassu we discuss concrete choices for the primitives

5

and an extensive comparison with ad-hoc constructions. We show that Lama-
ssu yields efficient instantiations that compared to OC∅C∅ only need 200 rank-1
constraints more than using the most aggressive parameter choice for the most
efficient SNARK-friendly primitive Poseidon in OC∅C∅. For all other and more
conservative choices of SNARK-friendly symmetric-key primitives and their pa-
rameters, Lamassu beats them in the number of constraints and outperforms
OC∅C∅ by a factor of up to 4.2x. Considering that EC-Schnorr and ECDSA
signatures are well established primitives, and that the confidence in their se-
curity is far bigger than all the recent SNARK/STARK-friendly primitives, this
additional confidence comes at only a very small cost and makes Lamassu an
attractive alternative to C∅C∅.
Subversion and updatable CRS. C∅C∅ as well as OC∅C∅ do not support lift-
ing of subversion or updatable CRS zk-SNARKs to SE subversion or updatable
SNARKs. While for the case of subversion zero-knowledge, Baghery in [Bag19]
shows that using a part of the C∅C∅ framework (without the encryption of the
witness) it is possible to preserve the subversion zero-knowledge property, the
case of zk-SNARKS with updatable CRS is more problematic. In particular, the
C∅C∅ and OC∅C∅ frameworks cannot be easily made updatable due to the miss-
ing algebraic structure in the used primitives, i.e., (hash) commitments.8 Lama-
ssu does not suffer from this problem and when using Lamassu with updatable
signatures instead of key-homomorphic signatures, the property of updatability
is preserved if the underlying zk-SNARK possesses this property, i.e., is updat-
able. Updatable signatures can be constructed from key-homomorphic signatures
with some additional natural properties and can be constructed from widely used
signatures such as EC-Schnorr signatures when instantiated in bilinear groups.
Besides, Lamassu also preserves subversion of the underlying SNARK. Con-
sequently, when starting from an subversion/updatable zk-SNARK, Lamassu
yields SE subversion/updatable SNARKs. Consequently, Lamassu is the only
known framework that allows to generically lift updatable zk-SNARKs to SE
updatable SNARKs using well established cryptographic primitives.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security pa-
rameter. All adversaries will be stateful. By y ← A(x;ω) we denote the fact that
A, given an input x and random coins ω, outputs y. By x←$D we denote that
x is sampled according to distribution D or uniformly randomly if D is a set.
Let RND(A) denote the random tape of A, and let ω←$RND(A) denote the
random choice of the random coins ω from RND(A). We denote by negl(λ) an
arbitrary negligible function. We write a ≈λ b if |a− b| ≤ negl(λ). A bilinear

8 Even using the C∅C∅ framework with commitments that have enough algebraic
structure, i.e., use of exponential ElGamal or Pedersen commitments, does not seem
to yield updatability. And even if it would work, it would be less efficient than
Lamassu.

6

group generator Pgen(1λ) returns BG = (p,G1,G2,GT , ē), where G1, G2, and
GT are three additive cyclic groups of prime order p, and ē : G1 × G2 → GT is
a non-degenerate efficiently computable bilinear map (pairing).

2.1 Pseudorandom Functions

We recall the standard notion of pseudorandom functions.

Definition 1 (PRF). Let f : S ×D → R be a family of functions and let Γ be
the set of all functions D → R. f is a pseudorandom function (PRF) (family) if
it is efficiently computable and for all PPT distinguishers D such that∣∣∣Pr

[
s←$S,Dfs(·)(1κ)

]
− Pr

[
g←$Γ,Dg(·)(1κ)

]∣∣∣ ≈λ 0.

2.2 X-SNARK

In the following we provide a formal definition of SNARKs (cf. Appendix A.1
for the basic definition of NIZK proofs).

Definition 2 (SNARK). A non-interactive system Π is a succinct non-in-
teractive argument of knowledge (SNARK) for relation generator RGen if it is
complete and knowledge sound, and moreover succinct, meaning that for all λ, all
(R, auxR) ∈ image(RGen(1λ)), all crs ← KGen(R, auxR), all (x, w) ∈ R and all
proofs π ← P(R, auxR, crs, x, w) we have |π| = poly(λ) and V(R, auxR, crs, x, π)
runs in time polynomial in λ+ |x|. Π is a zk-SNARK if it additionally satisfies
zero-knowledge and an SE (zk-)SNARK if instead of knowledge soundness it
provides strong simulation extractability.

We adopt the (SE) X-SNARK definitions from [ABLZ17, Fuc18, GKM+18]
where X ∈ {trusted, subverted, updatable}. In other words, besides considering
the standard setting with a trusted CRS generation, we also capture the sub-
version and updatable CRS setting. Trusted means generated by a trusted third
party, or even a more general MPC protocol, subverted means that the setup
generator gets the CRS from the adversary and uses it after checking that it
is well formed, and, updatable means that an adversary can adaptively gener-
ate sequences of CRSs and arbitrarily interleave its own malicious updates into
them. The only constraints on the final CRS are that it is well formed and that
at least one honest participant has contributed to it by providing an update.

A X-SNARK Π = (KGen,Ucrs,Vcrs,P,V) for RGen consists of the following
PPT algorithms (it contains Vcrs when X = subverted and contains Ucrs and
Vcrs when X = update):

KGencrs(R, auxR) : On input (R, auxR) ∈ image(RGen(1λ)), outputs CRS crs

and trapdoor tc.
Ucrs(R, crs) : On input (R, crs) outputs (crsup, ζup) where crsup is the up-

dated CRS and ζup is a proof for the correctness of the updating procedure.

7

Vcrs(R, auxR, crs, ζ) : On input (R, auxR, crs, ζ), returns either 0 (the CRS is
ill-formed) or 1 (the CRS is well-formed).

P(R, auxR, crs, x, w) : On input (R, auxR, crs, x, w), where (x, w) ∈ R, output a
proof π.

V(R, auxR, crs, x, π) : On input (R, auxR, crs, x, π), returns either 0 (reject) or
1 (accept).

Sim(R, auxR, crs, x, tc) : In input (R, auxR, crs, x, tc), outputs a simulated proof
π.

Definition 3. Let Π = (KGencrs,Ucrs,Vcrs,P,V) be a non-interactive argument
for the relation R. Then the argument Π is X-secure for X ∈ {trusted, subverted,
updatable}, if it satisfies the following properties:

X-Completeness. Π is complete for RGen, if for all λ, (x, w) ∈ R, and PPT
algorithms A,

Pr

(R, auxR)← RGen(1λ), (crs, tc, ζ)← A(R, auxR),

1← Vcrs(R, auxR, crs, ζ) :

V(R, auxR, crs, x,P(R, auxR, crs, x, w)) = 1

 =λ 1.

Where ζ is a proof for the correctness of the generating (or updating) the
CRS. If X = trusted then A is KGencrs and ζ = ⊥ and A is adversary A
otherwise.

X-Strong simulation extractability. For X ∈ {trusted, subverted}, Π is strong
simulation extractable for RGen, if for every PPT A, there exists a PPT ex-
tractor ExtA, s.t. ∀ λ,

Pr



(R, auxR)← RGen(1λ),

(crs, tc)← KGencrs(R, auxR), ωA←$RND(A),

(x, π)← AO(·)(R, auxR, crs;ωA),

w← ExtA(R, auxR, crs;ωA) :

(x, π) 6∈ Q ∧ (x, w) 6∈ R ∧
V(R, auxR, crs, x, π) = 1


≈λ 0.

Here, O(x) returns π := Sim(R, auxR, crs, x, tc) and keeps track of all queries
and the result, (x, π), via Q. For X = updatable, Π is strong simulation ex-
tractable for RGen, if for every PPT A and any subverter Z, there exists a

8

PPT extractor ExtA, s.t. ∀ λ,

Pr



(R, auxR)← RGen(1λ),

(crs, tc)← KGencrs(R, auxR)

ωZ←$RND(Z),

(crsup, ζup, auxZ)← Z(crs,{ζi}i=ni=1 , ωZ),

if Vcrs(crs,{ζi}i=ni=1) = 0 then return 0,

ωA←$RND(A),

(x, π)← AO(·)(R, auxR, crsup, auxZ;ωA),

w← ExtA(R, auxR, crsup, auxZ;ωA) :

(x, π) 6∈ Q ∧ (x, w) 6∈ R ∧
V(R, auxR, crsup, x, π) = 1



≈λ 0.

Here RND(Z) = RND(A) and ζ is a proof for the correctness of the updating
procedure. O(x) returns π := Sim(R, auxR, crs, x, tc) and keeps track of all
queried (x, π) via Q. Note that Z can also first generate crs and then an
honest updater updates it and outputs crsup.

X-Zero-knowledge. For X = trusted, Π is statistically unbounded ZK for
RGen [Gro06], if for all λ, all (R, auxR) ∈ im(RGen(1λ)), and all computa-
tionally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr
[
(crs, tc)← KGencrs(R, auxR) : AOb(·,·)(R, auxR, crs) = 1

]
.

Here, the oracle O0(x, w) returns ⊥ (reject) if (x, w) 6∈ R, and otherwise it
returns P(R, auxR, crs, x, w). Similarly, O1(x, w) returns ⊥ (reject) if (x, w) 6∈
R, and otherwise it returns Sim(R, auxR, crs, x, tc). Π is perfectly unbounded
ZK for RGen if one requires that εunb0 = εunb1 .
For X ∈ {subverted, updatable}, Π is statistically unbounded X-ZK for
RGen [ABLZ17, Fuc18, GKM+18], if for any PPT Z there exists a PPT
ExtZ, such that for all λ, (R, auxR) ∈ im(RGen(1λ)), and computationally
unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr

ωZ←$RND(Z), (crs, ζ, auxZ)← Z(R, auxR;ωZ),

tc← ExtZ(R, auxR;ωZ) :

Vcrs(R, auxR, crs, ζ) = 1 ∧ AOb(·,·)(R, auxR, crs, tc, auxZ) = 1

.
Here RND(Z) = RND(A), the oracle O0(x, w) returns ⊥ (reject) if (x, w) 6∈ R,
and otherwise it returns P(R, auxR, crs, x, w). Similarly, O1(x, w) returns ⊥
(reject) if (x, w) 6∈ R, and otherwise it returns Sim(R, auxR, crs, x, tc). Π is
perfectly unbounded X-ZK for RGen if one requires that εunb0 = εunb1 .

In all of the above properties, auxR can be seen as a common auxiliary input to
algorithm A that is generated by using a benign [BCPR14] relation generator; we
recall that we just think of auxR as being the description of a bilinear group.

9

We note that what is called strong simulation-sound extractability in this work
(in order to be consistent with [KZM+15]) is often simply called simulation-
sound extractability (e.g., in [DS19] which will be the basis for the Lamassu
framework). For completeness, quadratic arithmetic programs and rank 1 con-
straint systems are discussed in Appendix A.2

2.3 Signature Schemes

A signature scheme Σ = (KGen,Sign,Verify) consists of the following PPT algo-
rithms:

KGen(1κ) : On input security parameter κ it outputs a signing key sk and a
verification key pk with associated message spaceM.

Sign(sk,m) : On input a secret key sk and a message m ∈ M it outputs a
signature σ.

Verify(pk,m, σ) : On input a public key pk, a message m ∈ M and a signature
σ it outputs a bit b ∈ {0, 1}.

We note that for a signature scheme many independently generated public keys
may be with respect to the same parameters PP, e.g., some elliptic curve group pa-
rameters. In such a case we use an additional algorithm PGen and PP← PGen(1κ)
is then given to KGen. We assume that a signature scheme satisfies the usual
(perfect) correctness notion. Below, we present the standard existential unforge-
ability under adaptively chosen message attacks (EUF-CMA security) notion.

Definition 4 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if for all
PPT adversaries A

Pr

[
(sk, pk)← KGen(1κ), (m?, σ?)← ASign(sk,·)(pk) :

Verify(pk,m?, σ?) = 1 ∧ m? /∈ QSign

]
≈λ 0,

where the environment keeps track of the queries to the signing oracle via QSign.

The compiler from [ARS20] also requires one-time signature schemes that are
sEUF-CMA secure (also called sOTS schemes).

Definition 5 (Strong One-Time Signature Scheme). A strong one-time
signature scheme ΣOT is a signature scheme Σ which satisfies the following
unforgeability notion: For all PPT adversaries A

Pr

[
(sk, pk)← KGen(1κ), (m?, σ?)← ASign(sk,·)(pk) :

Verify(pk,m?, σ?) = 1 ∧ (m?, σ?) /∈ QSign

]
≈λ 0,

where the oracle Sign(sk,m) := Σ.Sign(sk,m) can only be called once.

10

2.4 Key-Homomorphic Signatures

We recall relevant parts of the definitional framework of key-homomorphic sig-
natures as introduced in [DS19]. Let Σ = (KGen,Sign,Verify) be a signature
scheme and the secret and public key elements live in groups (H,+) and (E, ·),
respectively. For these two groups is is required that group operations, inver-
sions, membership testing as well as sampling from the uniform distribution are
efficient.

Definition 6 (Secret Key to Public Key Homomorphism). A signature
scheme Σ provides a secret key to public key homomorphism, if there exists an
efficiently computable map µ : H → E such that for all sk, sk′ ∈ H it holds that
µ(sk+ sk′) = µ(sk) ·µ(sk′), and for all (sk, pk)← KGen, it holds that pk = µ(sk).

In the discrete logarithm setting, it is usually the case sk← Zp and pk = gsk with
g being the generator of some group G of prime order p, e.g., for EdDSA/ECDSA
or EC-Schnorr signatures (cf. [DS19] for a detailed exposition).

Definition 7 (Key-Homomorphic Signatures). A signature scheme is called
key-homomorphic, if it provides a secret key to public key homomorphism and
an additional PPT algorithm Adapt, defined as:

Adapt(pk,m, σ,∆) : Given a public key pk, a message m, a signature σ, and a
shift amount ∆ outputs a public key pk′ and a signature σ′,

such that for all ∆ ∈ H and all (pk, sk) ← KGen(1κ), all messages m ∈ M and
all σ ← Sign(sk,m) and (pk′, σ′)← Adapt(pk,m, σ,∆) it holds that

Pr[Verify(pk′,m, σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk.

The following notion covers whether adapted signatures look like freshly gen-
erated signatures, where we do not need the strongest notion in [DS19], which
requires this to hold even if the initial signature used in Adapt is known.

Definition 8 (Adaptability of Signatures). A key-homomorphic signature
scheme provides adaptability of signatures, if for every κ ∈ N and every message
m ∈M, it holds that

[(sk, pk),Adapt(pk,m,Sign(sk,m), ∆)],

where (sk, pk)← KGen(1κ), ∆← H, and

[(sk, µ(sk)), (µ(sk) · µ(∆),Sign(sk +∆,m)))],

where sk← H, ∆← H, are identically distributed.

For illustration purposes we will use the Schnorr signature scheme [Sch90], which
is very popular in the blockchain and distributed ledger domain, and whose
adaption notion we discuss in Appendix A.4.

11

2.5 Updatable Signature Schemes

Updatable signatures are signatures that allow updates on the key and unforge-
ability guarantees need to hold as long as either the initial key generation or at
least one of the updates was performed honestly. However, signing is performed
honestly. We note that like in Groth et al. [GKM+18] for updatable CRS (using
Lemma 6), one models only a single update as a single adversarial update implies
updatable signatures with arbitrary many updates.

Definition 9 (Updatable signature schemes). An updatable signature scheme
Σ = (KGen,Ucrs,Vpk,Sign,Verify) consists of the following PPT algorithms:

KGen(1λ) : Given a security parameter λ it outputs a signing key sk and a ver-
ification key pk with associated message spaceM.

Upk(pk) : Given a verification key pk it outputs an updated verification key pkup
with associated secret updating key upsk, and a proof ζ.

Vpk(pk, pkup, ζ) : Given a verification key pk, a potentially updated verification
key pkup, and the proof ζ it checks if pkup has been updated correctly.

Sign(sk,m) : Given potentially updated secret key sk (in case of skup it contains
sk and upsk) and a message m ∈M it outputs a signature σ.

Verify(pk,m, σ) : Given potentially updated public key pk, a message m ∈ M
and a signature σ it outputs a bit b ∈ {0, 1}.

Definition 10 (Updatable correctness). A signature scheme Σ is updatable cor-
rect, if

Pr


(sk, pk, ζ)← KGen(1λ), (upsk, pkup, ζup)← Upk(pk),

Vpk(pk, pkup, ζup) = 1 ∧ Vpk(pk, pk, ζ) = 1 :

Verify(pk,m,Sign(sk,m)) = 1 ∧
Verify(pkup,m,Sign(skup,m)) = 1

 = 1,

where the probability is taken over the randomness of the signing algorithm.

Definition 11 (Updatable strong key hiding). We have that for (sk, pk)← KGen(1λ)
and (upsk, pkup, ζup)← Upk(pk) it holds that (sk, pk) ≈λ (skup, pkup) if one of the
following setting holds,

– the original pk was honestly generated and the key-update verifies: (sk, pk)←
KGen(1λ) and Vpk(pk, pkup, ζup) = 1.

– the original pk verifies and the key-update was honest: Vpk(pk, pk, ζ) = 1,
and (upsk, pkup, ζup)← Upk(pk).

Now, we present the updatable EUF-CMA security notion.

Definition 12 (Updatable EUF-CMA). A signature scheme Σ is updatable EUF-
CMA secure, if for all PPT subverter Z, there exists a PPT extractor ExtZ, s.t. for
all λ, and all PPT adversaries A

Pr

(sk, pk, ζ)← KGen(1κ), ωZ←$RND(Z), (pkup, ζup, auxZ)← Z(pk;ωZ),

upsk ← ExtZ(pk, ωZ), (m?, σ?)← ASign(skup,·)(pkup, auxZ) :

Vpk(pk, pkup, ζup) = 1 ∧ Verify(pkup,m
?, σ?) = 1 ∧ m? /∈ QSign

 ≈λ 0,

12

where the environment keeps track of the queries to the oracle via QSign. Note
that Z can also generate the initial pk and the an honest updater Upk updates it
and outputs pkup, skup, and the proof ζ (then we require that Vpk(pk, pk, ζ) = 1).

In [ARS20] the following is shown.

Theorem 1. Every correct and EUF-CMA secure key-homomorphic signature
scheme Σ that is adaptable according to Definition 8 and provides an efficient
extractor ExtZ satisfies updatable correctness, updatable strong key hiding and
updatable EUF-CMA security.

3 Lifting Transformations for SE Subversion/Updatable
SNARKs

In this section we briefly present the C∅C∅ framework, then a revisited version
of the C∅C∅ framework (called OC∅C∅) and finally the Lamassu framework.

3.1 The C∅C∅ Framework

Kosba et al. [KZM+15] proposed lifting transformations for SNARKs in three
different versions basic, improved lifting, and the strengthening lifting. We only
consider the strongest version which lifts a SNARK to a strongly simulation
extractable (SE) SNARK. In particular, their construction, which we recall in
Fig. 1, transforms any NIZK Π to one that satisfies SE. Given a language L with
NP relation RL, let L′ be s.t. {(x, c, µ, pkOT, pke, ρ), (w, r1, r0, s0)} ∈ RL′ iff:

c = Ω.Enc(pke, w; r1)∧ ((x, w) ∈ RL ∨

(µ = fs0(pkOT) ∧ ρ = Commit(s0; r0))) ,
(1)

where pke is the public key of a public key encryption scheme Ω (cf. Ap-
pendix A.3), f is a pseudorandom function, and pkOT is the verification key
of a strong one-time signature (OTS) scheme ΣOT (cf. Definition 5). Note that
extraction is defined here with respect to a black-box extractor (i.e., decrypting
to obtain the witness), which Kosba et al. [KZM+15] do to support UC-security.
If this is not required, then one can use the non black-box extractor of the
underlying SNARK and simplify the language L′ by removing the part in the
gray box , which we will do subsequently (cf. [Bag19] for a formal treatment).
In this case, C∅C∅ retains subversion resistance of the underlying SNARK.

3.2 The Revisited C∅C∅ Framework OC∅C∅

The most efficient version of the C∅C∅ framework is based on a commitment and
PRF evaluation (Equation (1) without the gray box). Kosba et al. [KZM+15] pro-
posed to instantiate the commitment and the PRF using hash functions, and in

13

KGencrs(1
λ,L)

- Π.crs← Π.KGen; (pke, ske)← Ω.KGen(1λ);
- tc← (s0, r0)←$ {0, 1}λ; ρ← Commit(s0; r0);
- return (crs := (Π.crs, pke, ρ), tcext := ske)

P(crs, x, w)

- (pkOT, skOT)← ΣOT.KGen(1λ); r1, z0, z1, z2 ←$ {0, 1}λ;
- c = Ω.Enc(pke, w; r1);µ← z0;
- πΠ ← Π.P(Π.crs, (x, c, pke, pkOT, µ, ρ), (w, r1, z1, z2));
- σOT ← ΣOT.Sign(skOT, (x, c, µ, πΠ));
- return π := (c, µ, πΠ, pkOT, σOT);

V(crs, x, π)

- if ΣOT.Verify(pkOT, (x, c, µ, πΠ, σOT)) = 0
- ∨Π.V(Π.crs, x, c, µ, pke, pkOT, ρ, πΠ) = 0
- then return 0 else return 1;

Sim(crs, x, tc)

- (pkOT, skOT)← ΣOT.KGen(1λ);µ = fs0(pkOT);
- r1, z3 ←$ {0, 1}λ; c← Ω.Enc(pke, z3; r1); w← z3;
- πΠ ← Π.P(Π.crs, (x, c, pke, pkOT, µ, ρ), (w, r1, r0, s0));
- σOT ← ΣOT.Sign(skOT, (x, c, µ, πΠ));
- return π = (c, µ, πΠ, pkOT, σOT);

Ext(crs, x, π, tcext)

- return w← Ω.Dec(tcext, c);

Fig. 1. The strong version of the C∅C∅ transformation.

particular SHA-256. Similarly, the commitment is instantiated as hash commit-
ment using the same hash function. With the development of SNARK/STARK-
friendly primitives soon after the introduction of the C∅C∅ framework, we ob-
serve that this choice is non-optimal from an efficiency point of view. Moreover,
the choice of the commitment is also problematic in a different sense, because
the specific commitment used in C∅C∅ is secure in the random oracle model
(ROM). Since this implies that statements need to be proven with respect to the
preimage of a random oracle, instantiating the framework in a provable secure
way is not possible. Consequently, we discuss an alternative approach to commit
to the PRF key. It can be instantiated in a provably secure way and, on top of
that, is also more efficient while still relying on symmetric-key primitives only.

The problem in the symmetric setting is to find efficient binding commit-
ments. The signature scheme construction in [DOR+16] based on the Bellare-
Goldwasser paradigm [BG90] also needs to “commit” to a PRF key. There, sig-
natures consists of a simulation extractable NIZK proof of a PRF key, where
the PRF is built from symmetric-key primitives. The standard notion of PRF

14

security, however, does not immediately imply any binding property on the key.
Therefore, the construction relies on a computational fixed-valued-key-binding
PRF [CMR98, Fis99], i.e., a PRF f with the additional property that there ex-
ists a β such that for a PRF key s and given y = fs(β) it is hard to provide a
second PRF key s′, s 6= s′, satisfying y = fs′(β):

Definition 13 (Computational Fixed-Value-Key-Binding PRF). A PRF
family f : S×D → R is computationally key-binding if there exists a special value
β ∈ D so that it holds for all adversaries A that:

Pr
[
s←$S, s′ ← Afs(·)(fs(β), β) : fs′(β) = fs(β)

]
≈λ 0.

Extending the public key with the PRF evaluation at β and proving its well-
formedness is then sufficient to “commit” to the PRF key.9

For C∅C∅, we can apply the same idea: we replace the commitment to the
PRF key with the evaluation of the PRF at β and adapt the language accord-
ingly. That is, for the construction depicted in Fig. 110, let the language L′ be
such that {(x, µ, pkOT, ρ, β), (w, s0)} ∈ RL′ if and only if:{

(x, w) ∈ RL ∨ (µ = fs0(pkOT) ∧ ρ = fs0(β))
}
.

We denote the C∅C∅ framework using the language L′ as Optimized C∅C∅, or
OC∅C∅ for short. For the security proofs (Theorem 2 and Theorem 3 in [Bag19]),
we note for each game change based on computational hiding of the commitment,
we now use the PRF property and replace them with the evaluation of a random
function (Lemma 4). For the step relying on the commitment scheme’s binding
property (Lemma 2), one can now argue the uniqueness of the PRF key using
the fixed-value-key-binding property of the PRF. One obtains the following:

Corollary 1. If the underlying NIZK scheme satisfies perfect completeness, knowl-
edge soundness, subversion zero-knowledge, the PRF is secure and computation-
ally fixed-value-key-binding, and the one-time signature is sEUF-CMA secure,
then OC∅C∅ is a zero-knowledge proof system satisfying perfect completeness,
subversion zero-knowledge, and strong simulation extractability.

Instantiating the OC∅C∅ Framework. When instantiating the original C∅C∅
framework or OC∅C∅, SHA-256 as well as any other variant of the SHA2 family
or the SHA3 family are non-optimal choices from a efficiency point of view. In-
deed, representing the SHA-256 compression function as R1CS requires 22,272
constraints [CGGN17]. The permutation used in SHA3 is even more expen-
sive with 38,400 constraints [AGR+16]. Recent lines of work specifically de-
signed block ciphers and hash functions that work especially well in the con-
text of SNARKs. These include MiMC [AGR+16], GMiMC [AGP+19], Posei-
don [GKK+19], Friday [AD18], Vision and Rescue [AABS+19], which all were
9 Similarly, [DRS18] employs the same idea to commit to a PRF key.

10 Now, one will use the non black-box extractor of the underlying NIZK instead of the
black-box extractor Ext from Fig. 1.

15

specifically designed with SNARK/STARK-based applications in mind. We how-
ever want to note that these designs are all relatively young and were not avail-
able at the time C∅C∅ was proposed.

Since those designs are all very recent, their cryptanalysis is still ongoing.
Friday suffers from a Gröbner-basis attack [ACG+19], the key schedule of some
variants of MiMC can be attacked using an interpolation attack [LP19] and they
also suffer from a collision attack [Bon19], which can also be applied to some
variants of GMiMC. Notably, the designs also received some interest as part of
a hash collision challenge for STARK-friendly designs,11 where collisions have
been found for low-security instances already. Therefore, we will only include
instances in our evaluation that – to the best of our knowledge – have not been
broken so far.

Even though these symmetric primitives are designed for SNARKs, they
often run into practical problems. For instance, one of the popular choices for
instantiating SNARKs is the pairing-friendly BLS12-38112 curve. However, its
group order q does not match MiMC’s and GMiMC’s requirement coming from
the choice of x 7→ x3 as Sbox that gcd(q−1, 3) = 1. Additionally, MiMC operates
in large prime fields, requiring one to emulate the required fields on top of Fq.
The latter issue is solved by GMiMC working over smaller fields, but the order
requirement is still an issue. Poseidon, which allows one to choose x 7→ x5 as Sbox
meaning that gcd(q−1, 5) = 1 needs to be satisfied, fixes both problems and can
be directly implemented in Fq arithmetic. Similarly, Rescue faces similar issues
as the Sboxes used there are x 7→ xα and x 7→ x

1/α. Hence, for the specific choice
of BLS12-381 this would imply α = 5. Vision, on the other hand, is specified over
a binary field and can thus also not be directly implemented in Fq arithmetic.

Additionally, the signature scheme Picnic [CDG+17] demonstrated that
LowMC [ARS+15], initially designed for the application in secure multiparty
computation and fully homomorphic encryption, performs well enough in the
context of NIZKs. We consider LowMC in our evaluation as the conservative
choice of SNARK-friendly primitives, since it has seen some rounds of cryptanal-
ysis [DEM16, DLMW15] and corresponding updates to the round formula [RST18],
and additionally gained attention in terms of efficient implementations [DKP+19].

Evaluation. In Table 1 we evaluate a variety of SNARK-friendly primitives to-
gether with the SHA2 and SHA3 families of hash functions. Our evaluation
focuses on the provable secure version using fixed-value-key-binding PRFs as
discussed above with a PRF having 256 bit keys, inputs and outputs. The num-
ber of constraints are computed according to the formulas given in the respec-
tive works. We consider MiMC-(N,R), GMiMC-(N, t,R) with the expanding
round function (ERF) construction, Poseidon-(N, t,Rf , Rp) with x 7→ x5 as
SBox, Rescue-(N, t,R) with x 7→ x5 and x 7→ x

1/5, Vision-(N, t,R), and
LowMC-(N, k,m,R), where N denotes the block size, t the number of branches,
R the number of rounds, Rf and Rp the number of full and partial rounds, k
the key size and m the number of Sboxes.
11 https://starkware.co/hash-challenge/
12 https://electriccoin.co/blog/new-snark-curve/

16

https://starkware.co/hash-challenge/
https://electriccoin.co/blog/new-snark-curve/

Table 1. Number of constraints required for C∅C∅ and OC∅C∅.

Framework Symmetric primitive PRF / Commitment Provably secure # of constraints
PRF / Com.

∑
C∅C∅ SHA256 HMAC PRF + hash com. 7 111360 + 44544 244992

OC∅C∅

SHA256 HMAC PRF 3 111360 222720
TLS 1.2 PRF 3 230400 460800

SHAKE256 Sponge PRF 3 38400 76800
MiMC-(1025, 646) Sponge PRF 3 646 1292
GMiMC-(1024, 4, 332) Sponge PRF 3 999 1998
Poseidon-(1536, 2, 10, 114) Sponge PRF 3 402 804
Vision-(1778, 14, 10) Sponge PRF 3 1400 2800
Rescue-(1750, 14, 10) Sponge PRF 3 840 1680
LowMC-(256, 256, 1, 537) feed-forward PRF 3 1074 2148
LowMC-(1024, 256, 1, 1027) Sponge PRF 3 2144 4288

17

Where possible, we selected instances compatible with the field induced
by BLS12-381, i.e., for Poseidon and Rescue. The table also provides vari-
ous different PRF constructions. Where possible, we use a Sponge-based ap-
proach [BDPV08] akin to SHAKE256. For LowMC, we also consider a feed-
forward PRF built as fs(x) = E(s, x) ⊕ x where E denotes the encryption of a
block. In the case of SHA256, we consider three variants that can partly also
be observed in practice – directly using the HMAC output as PRF and the
one from TLS 1.2 [DR08]. Regardless of the concrete choice, even the rather
expensive SHAKE256 PRF is a better choice than any of the SHA256-based
ones.

We stress that the numbers in Table 1 should be treated as lower bounds.
One the one hand, as the security analysis of these primitives evolves, the rather
aggressive choice of round numbers may need to be increased. Considering that
the STARK-friendly hash challenge was almost immediately solved for the low
security instances of MiMC, GMiMC and Poseidon, we expect those numbers to
grow. On the other hand, for some of the instantiations it might not be imme-
diately clear if they actually provide the fixed-value-key-binding property. For
a very conservative instantiation, one could fallback to the tree-based approach
by Fischlin [Fis99], which would be even more expensive, since then every PRF
evaluation would internally call the PRF multiple times.

Other Important Remarks. Furthermore, beside more efficient instantiations
than within the original C∅C∅ framework, the approach based on fixed-value-
key-binding PRFs also circumvents another issue in concrete instantiations. Hash
commitments can only be proven secure in the ROM, which would require to
prove preimages of a random oracle. Hence, the construction is impossible to
properly instantiate with provable security guarantees. In any case, the choice
of a commitment based on symmetric primitive comes with other drawbacks as
well. Since such a commitment lacks any useful algebraic structure, it is not
obvious how to obtain SE updatable SNARKs.

Regarding the choice of strongly unforgeable one-time signature schemes,
Groth’s sOTS (as discussed in [ARS20]) or Boneh-Boyen signatures [BB04]
(as proposed in other instantiations of C∅C∅ [AB19, Bag19]) would be natu-
ral choices especially when considering the underlying SNARKs already rely on
discrete logarithm assumptions (in bilinear groups). Alternatively, any strong
EUF-CMA secure signature such as EC-Schnorr would fit as well. We note how-
ever, while this choice would avoid the need for a pairing evaluation for signa-
ture verification (in the case of Boneh-Boyen) and the proof overhead would be
slightly smaller, EC-Schnorr provides the necessary security guarantees only in
the ROM.13

13 In private communication, A. Kosba confirmed that their implementation used a
non-malleable variant of ECDSA for benchmarking. To the best of our knowledge,
this variant is only suspected to be strongly unforgeable without proof so far. Thus
we consider EC-Schnorr as candidate. The performance and overhead is expected to
be the same.

18

Putting everything together, instantiating the C∅C∅ or OC∅C∅ framework
with concrete symmetric primitives is non-trivial and comes with some limita-
tions. Subsequently, we will propose an alternative framework Lamassu, which
comes with the same cost as the most aggressive choice of symmetric-key prim-
itive and in contrast to C∅C∅ also provides SE updatable SNARKs.

3.3 The Lamassu Framework

Now, we present the Lamassu framework, which builds upon the recent com-
piler to obtain SE-NIZK proposed in [DS19]. However, we want to stress that we
cannot directly use their compiler in order to construct SE updatable SNARKs
and this requires non-trivial changes. The ingredients of their construction is to
use a combination of an EUF-CMA secure adaptable key-homomorphic signa-
ture scheme Σ (EC-Schnorr or ECDSA are good candidate for pairing based
SNARKs) and a strongly unforgeable one-time signature (sOTS) scheme ΣOT

(Groth’s sOTS under the discrete logarithm assumption is a good candidate)
to add the required non-malleability guarantees to the underlying knowledge
sound NIZK proof system Π together with the folklore OR-trick to add simula-
tion soundness. The distinguishing feature of this transformation is that in the
proof computation one computes a signature to certify a public key of OTS using
freshly sampled signing key sk of Σ in plain and thus does not need to encrypt
a signature and prove that it verifies with a verification key in the CRS (e.g., as
done in [Gro06]). Consequently, in the OR part of the proof one just needs to
prove that one knows the shift csk (which is the trapdoor of the CRS) to adapt
signatures from pk to ones valid under verification key cpk in the CRS. As it
turns out, this feature lays the foundation for being able to support updatability.
Now, given any language L with NP relation RL, the language obtained via the
compiler is L′ s.t. {(x, cpk, pk), (w, csk− sk)} ∈ RL′ iff:

{(x, w) ∈ RL ∨ cpk = pk · µ(csk− sk)} .

More precisely, in every proof computation one uses Σ to “certify” the public key
of a newly generated key pair of ΣOT. The secret key of ΣOT is then used to sign
the parts of the proof which must be non-malleable. Adaptability of Σ makes
it possible to also use newly generated keys of Σ upon each proof computation.
In particular, the relation associated to L′ is designed so that the additional
clause introduced via the OR-trick is the “shift amount” required to shift such
signatures to signatures under a key cpk of Σ in the CRS. A proof for x ∈ L
is easy to compute when given w such that (x, w) ∈ Lπ. One does not need a
satisfying assignment for the second clause in the OR statement, and can thus
compute all signatures under newly generated keys. To simulate proofs, however,
one can set up CRS in a way that we know csk corresponding to cpk, compute
the “shift amount” and use it as a satisfying witness for the other clause in the
OR statement. We recall the construction in Fig. 2 and for completeness recall

19

the Theorem given in [DS19] below.14 We note that for non black-box extraction
as it is the case with SNARKs, the trapdoor tcext = ⊥ and one simply uses the
non black-box extractor of the underlying SNARK.

Theorem 2 ([DS19]). Let Π be a complete, witness indistinguishable non-
interactive argument of knowledge system for the language L, let Σ be an EUF-
CMA secure signature scheme that adapts signatures, and let ΣOT be a strongly
unforgeable one-time signature scheme, then the argument system Π′ is a com-
plete and strong simulation extractable argument system for language L′.

Note that the theorem clearly applies to any proof system that is zero-knowledge,
as this implies the weaker notion of witness-indistinguishability.

Applying [DS19] to NIZKs without knowledge soundness. We now argue that,
although we do not require it in context of SNARKs, analogous to the folklore
compiler used in [KZM+15], we can also start form any NIZK that is only sound
instead of knowledge sound. Then, using the compiler in [DS19] we still can
obtain SE-NIZK when starting from any conventional NIZK. More precisely, the
by now folklore compiler [DP92] to obtain knowledge soundness for any sound
NIZK is to put a public key pke of any perfectly correct IND-CPA secure public
key encryption scheme into the CRS, where the extraction trapdoor tcExt is
the corresponding secret key, and extend the language such that it contains an
encryption of the witness of the original language. We will capture this in the
following corollary, where starting from a NIZK for L with NP relation RL,
we obtain a knowledge sound NIZK by extending the language to L′ such that
{(x, c), (w, ω)} ∈ RL′ iff:

{(x, w) ∈ RL ∧ c = Enc(pke, w;ω)} .

Corollary 2. Let NIZK for language L be complete, sound and zero-knowledge,
the public key encryption scheme be perfectly correct and IND-CPA secure, then
the NIZK for language L′ is complete, knowledge-sound and zero-knowledge.

The proof exactly follows the argumentation in [KZM+15] and is thus omitted.
We stress that if one bases the compiler of [DS19] on a NIZK that is based on
standard or falsifiable assumptions that is only sound, then one requires this
additional encryption of the witness w. However, when one relies on knowledge
assumptions, as it is the case within SNARKs, then one does not need the
language extension in Corollary 2 and can simply use the non black-box extractor
of the underlying SNARK.

14 We note that what is called simulation sound extractable in [DS19] is called strong
simulation extractable in this paper in order to be aligned with the notation used in
the C∅C∅ framework.

20

KGencrs(1
λ)

- (crsΠ, tcΠ, tcext)← Π.KGen(1λ);
- (csk, cpk)← Σ.KGen(1κ);
- crs := (crsΠ, cpk), tc := (tcΠ, csk); return crs.

P(crs, x, w)

- (sk, pk)← Σ.KGen(1κ);
- (skOT, pkOT)← ΣOT.KGen(1κ);
- πΠ ← Π.P(crs, x, (w,⊥);σ ← Σ.Sign(sk, pkOT));
- σOT ← ΣOT.Sign(skOT, πΠ||x||pk||σ);

return π := (πΠ, pk, σ, pkOT, σOT).

V(crs, x, π)

- Parse π as (πΠ, pk, σ, pkOT, σOT);
- if Π.V(crsΠ, x, πΠ) = 0
∨ Σ.Verify(pk, pkOT, σ) = 0
∨ ΣOT.Verify(pkOT, πΠ||x||pk||σ, σOT) = 0 then return 0;
else return 1.

Sim(crs, x, tc)

- (sk, pk)← Σ.KGen(1κ); (skOT, pkOT)← ΣOT.KGen(1κ);
- πΠ ← Π.P(crs, x, (⊥, csk− sk);σ ← Σ.Sign(sk, pkOT);
- σOT ← ΣOT.Sign(skOT, πΠ||x||pk||σ);
- return π := (πΠ, pk, σ, pkOT, σOT).

Ext(crs, x, π, tcext)

- (w,⊥)← Π.Ext(crs, x, π, tcext); return w.

Fig. 2. The generic SE-NIZK compiler from [DS19].

Updatable SNARKs from Lamassu. In the following we present the generic
construction using the definitional framework in [GKM+18] for updatable SNARKs
and refer to [ARS20] for subversion version of the compiler. Roughly speaking,
in the updatable CRS definition, Groth et. al relaxed the CRS model by allowing
the adversary to either fully generate the CRS itself, or at least contribute to
its computation as one of the parties performing updates. In other words, we
can think of this as having the adversary interact with the KGencrs algorithm.
An updatable SNARK has the following additional PPT algorithms on top of
(KGencrs,P,V,Sim). After running (crs, tc, ζ) ← KGencrs, where ζ is a proof of
correctness of crs.

Ucrs(1λ, crs,{ζi}i=ni=1). Takes as input the security parameter λ, a CRS crs, and
a list of update proofs for the CRS. It outputs an updated CRS crsup and
a proof ζup of the correctness of the update.

21

Vcrs(1λ, crs,{ζi}i=ni=1). Given the security parameter λ, a CRS crs, and a list of
proofs ζi. It outputs a bit indicating accept (b = 1), or reject (b = 0).

The standard trusted setup can be considered as an updatable setup with
ζ = ε as the update proof and where the verification algorithm accepts anything.
For a subversion resistant setup (Sub-zk-SNARKs), the proof ζ could be added
as extra elements into the CRS solely to make the CRS verifiable.

We present the full construction of SE updatable SNARKs in Fig. 3. Notice
that in the Fig. 3, the subverter Z could be either the algorithms (Π.KGen,
Σ.KGen) or the updater Ucrs.

Theorem 3 ([ARS20]). Let the underlying updatable SNARK scheme satisfy
perfect completeness, updatable zero-knowledge, and updatable knowledge sound-
ness. Let Σ be an EUF-CMA secure adaptable and updatable signature scheme
and ΣOT is a strongly unforgeable one-time signature scheme. Then, the SE up-
datable SNARKs argument system from Fig. 3, is (i) perfectly complete, (ii)
updatable zero-knowledge, and (iii) updatable strong simulation extractable.

Instantiation. As an example instantiation, by taking updatable Schnorr sig-
natures as presented in Section 2.5, using the Lamassu framework we can now
obtain an SE updatable SNARK by lifting the updatable SNARK in [GKM+18].
This, for instance, results in an overhead of 1G1 + 1G2 elements in the CRS and
2G1 +2G2 +2Zq elements in the proofs (cf. Table 2 for a comparison of different
instantiations and existing ad-hoc approaches).

4 Evaluation

For the evaluation of OC∅C∅ and Lamassu, we focus on SNARKs built from
the pairing-friendly elliptic curve BLS12-381. In this case, we can leverage the
Jubjub curve [HBHW19] used by Zcash for fast elliptic-curve arithmetic in the
circuit. The Jubjub curve is a twisted Edwards curve defined over Fr with r
being the prime order of BLS12-381. Twisted Edwards curves enjoy complete
addition laws and they naturally fit the requirements of Schnorr signatures.

22

KGencrs(1
λ)

- (crsΠ, tcΠ, ζΠ)← Π.KGen(1λ);
- (csk, cpk, ζcpk)← Σ.KGen(1κ);
- crs := (crsΠ, cpk), tc := (tcΠ, csk); return crs.

Ucrs(1λ, crs,{ζi}i=ni=1)

- (crsΠ,up, ζΠ,up)← Π.Ucrs(1λ, crsΠ,{ζΠ,i}i=ni=1);

- (cpkup, ζcpk,up)← Σ.Ucrs(cpk,{ζcpk,i}i=ni=1);

- return (crsup = (crsΠ,up, cpkup), ζup = (ζΠ,up, ζcpk,up))

Vcrs(1λ, crs,{ζi}i=ni=1)

- Parse ζi as (ζΠ,i, ζcpk,i);

- if VcrsΠ(1λ, crs,{ζΠ,i}i=ni=1) = 1 ∧
- Σ.Vpk(pk, cpk,{ζcpk,i}i=ni=1)) = 1

then return 1; else return 0.

P(crsup, x, w)

- (sk, pk)← Σ.KGen(1κ);
- (skOT, pkOT)← ΣOT.KGen(1κ);
- πΠ ← Π.P(crsup, x, (w,⊥),⊥);σ ← Σ.Sign(sk, pkOT);
- σOT ← ΣOT.Sign(skOT, πΠ||x||pk||σ);

return π := (πΠ, pk, σ, pkOT, σOT).

V(crsup, x, π)

- Parse π as (πΠ, pk, σ, pkOT, σOT);
- if Π.V(crsΠ,up, x, πΠ) = 0 ∨ Σ.Verify(pk, pkOT, σ) = 0
∨ ΣOT.Verify(pkOT, πΠ||x||pk||σ, σOT) = 0 then return 0;
else return 1.

Sim(crsup, x, tc)

- (sk, pk)← Σ.KGen(1κ); (skOT, pkOT)← ΣOT.KGen(1κ);
- πSim ← Π.Sim(crsΠ,up, x, (⊥, tcΠ),⊥);
- σ ← Σ.Sign(sk, pkOT);
- σOT ← ΣOT.Sign(skOT, πSim||x||pk||σ);

return π := (πΠ, pk, σ, pkOT, σOT).

ExtZ(1λ, crs, crsup, ωZ)

- tc← Π.Ext(1λ, crs, crsup, ωZ); return tc.

Fig. 3. The SE updatable SNARKs from Lamassu.

23

Table 2. Comparison of SE-SNARKs. The given sizes for the CRS and proofs as well as the number of operations are
overheads compared to the underlying SNARKs. For ad-hoc constructions the overhead is relative to Groth’s SNARK.
n denotes the number of multiplication gates.

Features Overhead
generic subversion updatable crs bits π bits V

C∅C∅ [KZM+15]‡ 3 3? 7 1λ 256 1G, 2Zq, 1λ 1016 2EG
OC∅C∅[S] 3 3? 7 2λ 512 1G, 2Zq, 1λ 1016 2EG
OC∅C∅[G] 3 3? 7 2λ 512 3G, 2Zq, 1λ 1528 3EG
Lamassu[S,S] 3 3 7 1G 256 2G, 4Zq 1520 4EG
Lamassu[S,S] 3 3 3 1G1, 1G2 1145 1G1, 1G2, 1G, 4Zq 2415 2EG1 , 2EG
Lamassu[S,G] 3 3 7 1G 256 4G, 4Zq 2032 5EG
Lamassu[S,G] 3 3 3 1G1, 1G2 1145 1G1, 1G2, 3G, 4Zq 2927 2EG1 , 3EG
Lamassu[S,BB] 3 3 7 1G 256 1G1, 1G2, 1G, 2Zq 1905 2EG, 1P
Lamassu[S,BB] 3 3 3 1G1, 1G2 1145 2G1, 2G2, 2Zq 2800 2EG1 , 1P

Groth-Maller [GM17] 7 7 7 (2n+ 5)G1, nG2 1910 + 1527n – 0 2P
Bowe-Gabizon [BG18] 7 7 7 –† 0 1G1, 1G2 1146 2P
Lipmaa (Sse

qap) [Lip19] 7 3 7 nG1 382n 1G1 382 2P
Kim-Lee-Oh [KLO19] 7 3 3 nG1 382n – 0 –
Atapoor-Baghery [AB19]‡ 7 7 7 1λ 256 1G1, 1G2, 1λ 1401 1P
Baghery [Bag19]‡ 7 3 7 1λ 256 1G1, 1G2, 1λ 1401 1P

‡ Proves statements with respect to the evaluation of a random oracle (cf. Section 3.2).
† Achieves no crs overhead by additionally requiring random oracles.
? With the non-black box extractor, C∅C∅ retains the subversion resistance of the underlying SNARK [Bag19].

24

The Sapling protocol uses the Jubjub curve to prove relations of the form
rk = ak·gα and checking that α is in the correct range for the witness α. The first
part of the relation can be expressed with 756 constraints, whereas the latter
can be expressed with 252 constraints, so a total of 1008 constraints [HBHW19,
Section A.4]. For Lamassu, we extend the relation with a proof of the state-
ment cpk = pk ·µ(csk− sk) with the witness csk− sk. For Schnorr signatures (cf.
Appendix A.4), but also other DLOG-based signature schemes such as Schnorr,
the public key is a group element of the form gsk and similarly µ simply maps
scalars to the corresponding group element, i.e., µ(x) = gx. Hence, the circuit
for this relation also requires 1008 constraints. Compared to the OC∅C∅ frame-
work instantiations (cf. Table 1), Lamassu needs only 200 constraints more than
the most aggressive choice using Poseidon and beats all others in the number
of constraints. Considering that Schnorr signatures are well established primi-
tives, and that the confidence in their security is far bigger than all the recent
SNARK/STARK-friendly primitives, this additional confidence and the updata-
bility feature come at a very small cost for the prover.

In terms of bandwidth overhead, we only need to compare the overhead in-
duced by cpk = pk·µ(csk−sk) together with the signature and one-time signature
in Lamassu, and µ = fs0(pks) ∧ ρ = fs0(β0) and the one-time signature in the
case of OC∅C∅. We start with Lamassu. The CRS is extended with a public key
cpk of signature scheme Σ, i.e., when using Schnorr (or ECDSA) a point on the
Jubjub curve which requires 510 bits without or 256 bits with point compression.
For each proof, new Σ and ΣOT keys are sampled. The proof then includes a Σ
public key and signature, as well as as ΣOT public key and signature. The former
amounts to 256 bits for the public key and 504 bits for the signature (2 integers
modulo the group order), and the latter – when instantiated as Groth’s sOTS
over Jubjub (or a curve of similar size) – amounts to 768 bits for the public key
(3 group elements) and 504 bits for the signature (2 integers modulo the group
order). In total, the size of the proof is increased by 2032 bits. The updatable
version is similar, but Schnorr is performed in G1 with additional public key and
update in G2.

For C∅C∅, the CRS is extended with a SHA256 commitment. The proofs are
extended with a freshly generated ΣOT public key and a signature together with
the evaluation of a PRF also instantiated with SHA256. Hence, the CRS grows
by 256 bits and each proof grows by 1016 bits assuming the use of Schnorr over
Jubjub. For OC∅C∅, the CRS is extended with ρ and β, both 256 bits each.
Each proof additionally contains µ as well as freshly generated ΣOT public key
and signature. Using Groth’s sOTS, the proof grows by 1528 bits in total.

In Table 2 we present a comparison of SE-SNARKs including OC∅C∅ using
Groth’s OTS, OC∅C∅[G], and Schnorr, OC∅C∅[S], Lamassu using Schnorr, La-
massu[S,S], Groth’s OTS, Lamassu[S,G], and Boneh-Boyen signatures [BB04],
Lamassu[S,BB], both as non-updatable and updatable variant. The overhead is
relative to the underlying SNARK (for the generic constructions) or the SNARK
they are based on, e.g., relative to [Gro16]. In the table, n denotes the number
of multiplication gates in the circuit, G1 and G2 the two source groups of a bi-

25

linear group, G a group with prime order q, and λ the sizes of commitments and
PRF evaluations. For concrete numbers, we followed the above choice of curves,
namely Jubjub (G) and BLS12-381 as bilinear group (p,G1,G2,GT , e, g, ĝ), re-
spectively. For commitments and PRF images, we assume that they are 256 bits.
For the verifier overhead, we consider the most expensive operations. EG denotes
an exponentiation in G and P a pairing evaluation. Thereby, P is a factor 10
slower than EG.

Compared to the ad-hoc constructions, the generic frameworks C∅C∅, OC∅C∅,
and Lamassu offer a trade-off between the size of the CRS, proof sizes and
verifier overhead. Especially when comparing to Kim-Lee-Oh [KLO19], which
only extends the CRS, this trade-off becomes apparent. When comparing to
the others, the verifier overhead is smaller than the ones observed for Groth-
Maller [GM17], Bowe-Gabizon [BG18] and Lipmaa [Lip19] and is comparable to
the constructions of Atappoor-Baghery [AB19] and Baghery [Bag19], yet La-
massu offers more features.

Acknowledgements. We thank Ahmed Kosba for valuable feedback on the
choice of the one-time signature scheme in the C∅C∅ framework. We also like
to thank the anonymous reviewers. This work was supported by the European
Union’s Horizon 2020 research and innovation programme under grant agree-
ments n◦830929 (CyberSec4Europe) and n◦871473 (KRAKEN), by the Austrian
Science Fund (FWF) and netidee SCIENCE under grant agreement P31621-N38
(PROFET) and the Estonian Research Council grant PRG49.

References

AABS+19. Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and
Alan Szepieniec. Design of symmetric-key primitives for advanced cryp-
tographic protocols. Cryptology ePrint Archive, Report 2019/426, 2019.
https://eprint.iacr.org/2019/426.

AB19. Shahla Atapoor and Karim Baghery. Simulation extractability in groth’s
zk-snark. In Cristina Pérez-Solà, Guillermo Navarro-Arribas, Alex
Biryukov, and Joaquín García-Alfaro, editors, Data Privacy Management,
Cryptocurrencies and Blockchain Technology - ESORICS 2019 Interna-
tional Workshops, DPM 2019 and CBT 2019, Luxembourg, September 26-
27, 2019, Proceedings, volume 11737 of LNCS, pages 336–354. Springer,
2019.

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33.
Springer, Heidelberg, December 2017.

ACG+19. Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich,
Reinhard Lüftenegger, Christian Rechberger, and Markus Schofnegger. Al-
gebraic cryptanalysis of STARK-friendly designs: Application to MAR-
VELlous and MiMC. In Steven D. Galbraith and Shiho Moriai, edi-
tors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 371–397.
Springer, Heidelberg, December 2019.

26

https://eprint.iacr.org/2019/426

ACJT00. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A prac-
tical and provably secure coalition-resistant group signature scheme. In
Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 255–
270. Springer, Heidelberg, August 2000.

AD18. Tomer Ashur and Siemen Dhooghe. Marvellous: a stark-friendly family of
cryptographic primitives. Cryptology ePrint Archive, Report 2018/1098,
2018. https://eprint.iacr.org/2018/1098.

AGP+19. Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher,
Christian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofneg-
ger. Feistel structures for MPC, and more. In Kazue Sako, Steve Schneider,
and Peter Y. A. Ryan, editors, ESORICS 2019, Part II, volume 11736 of
LNCS, pages 151–171. Springer, Heidelberg, September 2019.

AGR+16. Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy,
and Tyge Tiessen. MiMC: Efficient encryption and cryptographic hashing
with minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
191–219. Springer, Heidelberg, December 2016.

AMV15. Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-
resilient signature schemes. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, ACM CCS 2015, pages 364–375. ACM Press, October
2015.

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 430–454. Springer, Heidelberg, April 2015.

ARS20. Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. Lift-and-
shift: Obtaining simulation extractable subversion and updatable snarks
generically. IACR Cryptology ePrint Archive, 2020:62, 2020.

Bag19. Karim Baghery. Subversion-resistant simulation (knowledge) sound NIZKs.
In Martin Albrecht, editor, 17th IMA International Conference on Cryp-
tography and Coding, volume 11929 of LNCS, pages 42–63. Springer, Hei-
delberg, December 2019.

BB04. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In
Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 56–73. Springer, Heidelberg, May 2004.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and Privacy, pages
315–334. IEEE Computer Society Press, May 2018.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
669–699. Springer, Heidelberg, August 2018.

BBHR19. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable
zero knowledge with no trusted setup. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
701–732. Springer, Heidelberg, August 2019.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
41–55. Springer, Heidelberg, August 2004.

27

https://eprint.iacr.org/2018/1098

BBUV19. Ward Beullens, Tim Beyne, Aleksei Udovenko, and Giuseppe Vitto. Crypt-
analysis of the legendre prf and generalizations. Cryptology ePrint Archive,
Report 2019/1357, 2019. https://eprint.iacr.org/2019/1357.

BCC04. Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous
attestation. In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick Mc-
Daniel, editors, ACM CCS 2004, pages 132–145. ACM Press, October 2004.

BCC+09. Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna
Lysyanskaya, and Hovav Shacham. Randomizable proofs and delegatable
anonymous credentials. In Shai Halevi, editor, CRYPTO 2009, volume
5677 of LNCS, pages 108–125. Springer, Heidelberg, August 2009.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and
Jens Groth. Foundations of fully dynamic group signatures. In Mark
Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS 16,
volume 9696 of LNCS, pages 117–136. Springer, Heidelberg, June 2016.

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying program executions succinctly
and in zero knowledge. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

BCG+15. Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and
Madars Virza. Secure sampling of public parameters for succinct zero
knowledge proofs. In 2015 IEEE Symposium on Security and Privacy,
pages 287–304. IEEE Computer Society Press, May 2015.

BCG+18. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary
Maller. Arya: Nearly linear-time zero-knowledge proofs for correct pro-
gram execution. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part I, volume 11272 of LNCS, pages 595–626. Springer,
Heidelberg, December 2018.

BCPR14. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the exis-
tence of extractable one-way functions. In David B. Shmoys, editor, 46th
ACM STOC, pages 505–514. ACM Press, May / June 2014.

BDD+15. Achiya Bar-On, Itai Dinur, Orr Dunkelman, Virginie Lallemand, Nathan
Keller, and Boaz Tsaban. Cryptanalysis of SP networks with partial non-
linear layers. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part I, volume 9056 of LNCS, pages 315–342. Springer,
Heidelberg, April 2015.

BDPV08. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the indifferentiability of the sponge construction. In Nigel P. Smart, edi-
tor, EUROCRYPT 2008, volume 4965 of LNCS, pages 181–197. Springer,
Heidelberg, April 2008.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM STOC,
pages 103–112. ACM Press, May 1988.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an
untrusted CRS: Security in the face of parameter subversion. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 777–804. Springer, Heidelberg, December 2016.

28

https://eprint.iacr.org/2019/1357

BG90. Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures
and message authentication based on non-interative zero knowledge proofs.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 194–
211. Springer, Heidelberg, August 1990.

BG18. Sean Bowe and Ariel Gabizon. Making groth’s zk-SNARK simulation ex-
tractable in the random oracle model. Cryptology ePrint Archive, Report
2018/187, 2018. https://eprint.iacr.org/2018/187.

BGG19. Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol
for constructing the public parameters of the pinocchio zk-SNARK. In Aviv
Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Fed-
erico Pintore, and Massimiliano Sala, editors, FC 2018 Workshops, volume
10958 of LNCS, pages 64–77. Springer, Heidelberg, March 2019.

BL09. Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing.
Cryptology ePrint Archive, Report 2009/095, 2009. http://eprint.iacr.
org/2009/095.

Bon19. Xavier Bonnetain. Collisions on feistel-mimc and univariate gmimc. Cryp-
tology ePrint Archive, Report 2019/951, 2019. https://eprint.iacr.org/
2019/951.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

CCD+17. Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick,
and Rainer Urian. One TPM to bind them all: Fixing TPM 2.0 for provably
secure anonymous attestation. In 2017 IEEE Symposium on Security and
Privacy, pages 901–920. IEEE Computer Society Press, May 2017.

CDD17. Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical UC-
secure delegatable credentials with attributes and their application to
blockchain. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 683–699. ACM Press, Octo-
ber / November 2017.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key prim-
itives. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1825–1842. ACM Press, Oc-
tober / November 2017.

CFQ19. Matteo Campanelli, Dario Fiore, and AnaÃŕs Querol. Legosnark: Modular
design and composition of succinct zero-knowledge proofs. Cryptology
ePrint Archive, Report 2019/142, 2019. https://eprint.iacr.org/2019/
142, to appear at CCS’19.

CGGN17. Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Niz-
zardo. Zero-knowledge contingent payments revisited: Attacks and pay-
ments for services. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 229–243. ACM
Press, October / November 2017.

CGL+17. Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao, Ian
Miers, and Pratyush Mishra. Decentralized anonymous micropayments.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part II, volume 10211 of LNCS, pages 609–642. Springer,
Heidelberg, April / May 2017.

29

https://eprint.iacr.org/2018/187
http://eprint.iacr.org/2009/095
http://eprint.iacr.org/2009/095
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2019/142
https://eprint.iacr.org/2019/142

Cha86. David Chaum. Showing credentials without identification: Signatures
transferred between unconditionally unlinkable pseudonyms. In Franz
Pichler, editor, EUROCRYPT’85, volume 219 of LNCS, pages 241–244.
Springer, Heidelberg, April 1986.

CHM+19. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas Ward. Marlin: Preprocessing zkSNARKs with uni-
versal and updatable SRS. Cryptology ePrint Archive, Report 2019/1047,
2019. https://eprint.iacr.org/2019/1047.

CKL+16. Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen,
Gregory Neven, and Michael Østergaard Pedersen. Formal treatment of
privacy-enhancing credential systems. In Orr Dunkelman and Liam Keli-
her, editors, SAC 2015, volume 9566 of LNCS, pages 3–24. Springer, Hei-
delberg, August 2016.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 93–118. Springer, Heidelberg, May 2001.

CL03. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, edi-
tors, SCN 02, volume 2576 of LNCS, pages 268–289. Springer, Heidelberg,
September 2003.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer, Heidelberg,
August 2004.

CMR98. Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way
probabilistic hash functions (preliminary version). In 30th ACM STOC,
pages 131–140. ACM Press, May 1998.

Cv91. David Chaum and Eugène van Heyst. Group signatures. In Donald W.
Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages 257–265.
Springer, Heidelberg, April 1991.

Dam92. Ivan Damgård. Towards practical public key systems secure against chosen
ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 445–456. Springer, Heidelberg, August 1992.

DEM16. Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Higher-order
cryptanalysis of LowMC. In Soonhak Kwon and Aaram Yun, editors,
ICISC 15, volume 9558 of LNCS, pages 87–101. Springer, Heidelberg,
November 2016.

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.
Square span programs with applications to succinct NIZK arguments. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume
8873 of LNCS, pages 532–550. Springer, Heidelberg, December 2014.

DGS03. Ivan Damgård, Jens Groth, and Gorm Salomonsen. The theory and im-
plementation of an electronic voting system. In Dimitris Gritzalis, editor,
Secure Electronic Voting, volume 7 of Advances in Information Security,
pages 77–98. Springer, 2003.

DKP+19. Itai Dinur, Daniel Kales, Angela Promitzer, Sebastian Ramacher, and
Christian Rechberger. Linear equivalence of block ciphers with partial
non-linear layers: Application to LowMC. In Yuval Ishai and Vincent Ri-
jmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
343–372. Springer, Heidelberg, May 2019.

30

https://eprint.iacr.org/2019/1047

DLMW15. Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized inter-
polation attacks on LowMC. In Tetsu Iwata and Jung Hee Cheon, edi-
tors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 535–560.
Springer, Heidelberg, November / December 2015.

DOR+16. David Derler, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger,
and Daniel Slamanig. Digital signatures from symmetric-key primitives.
Cryptology ePrint Archive, Report 2016/1085, 2016. http://eprint.
iacr.org/2016/1085.

DP92. Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowl-
edge without interaction (extended abstract). In 33rd FOCS, pages 427–
436. IEEE Computer Society Press, October 1992.

DP06. Cécile Delerablée and David Pointcheval. Dynamic fully anonymous short
group signatures. In Phong Q. Nguyen, editor, Progress in Cryptology -
VIETCRYPT 06, volume 4341 of LNCS, pages 193–210. Springer, Heidel-
berg, September 2006.

DR08. Tim Dierks and Eric Rescorla. The transport layer security (TLS) protocol
version 1.2. RFC, 5246:1–104, 2008.

DRS18. David Derler, Sebastian Ramacher, and Daniel Slamanig. Generic double-
authentication preventing signatures and a post-quantum instantiation.
In Joonsang Baek, Willy Susilo, and Jongkil Kim, editors, ProvSec 2018,
volume 11192 of LNCS, pages 258–276. Springer, Heidelberg, October 2018.

DS18. David Derler and Daniel Slamanig. Highly-efficient fully-anonymous dy-
namic group signatures. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim,
Yongdae Kim, Javier López, and Taesoo Kim, editors, ASIACCS 18, pages
551–565. ACM Press, April 2018.

DS19. David Derler and Daniel Slamanig. Key-homomorphic signatures: defini-
tions and applications to multiparty signatures and non-interactive zero-
knowledge. Des. Codes Cryptogr., 87(6):1373–1413, 2019.

FHS19. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 32(2):498–546, April 2019.

Fis99. Marc Fischlin. Pseudorandom function tribe ensembles based on one-way
permutations: Improvements and applications. In Jacques Stern, editor,
EUROCRYPT’99, volume 1592 of LNCS, pages 432–445. Springer, Heidel-
berg, May 1999.

FMMO19. Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi.
Quisquis: A new design for anonymous cryptocurrencies. In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume
11921 of LNCS, pages 649–678. Springer, Heidelberg, December 2019.

FPS+18. Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and
Daniel J. Weitzner. Practical accountability of secret processes. In William
Enck and Adrienne Porter Felt, editors, USENIX Security 2018, pages 657–
674. USENIX Association, August 2018.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Ab-
dalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of
LNCS, pages 315–347. Springer, Heidelberg, March 2018.

Fuc19. Georg Fuchsbauer. WI is not enough: Zero-knowledge contingent (ser-
vice) payments revisited. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 49–62. ACM
Press, November 2019.

31

http://eprint.iacr.org/2016/1085
http://eprint.iacr.org/2016/1085

GGP10. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive ver-
ifiable computing: Outsourcing computation to untrusted workers. In
Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482.
Springer, Heidelberg, August 2010.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

GKK+19. Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy, Christian
Rechberger, and Markus Schofnegger. Starkad and poseidon: New hash
functions for zero knowledge proof systems. Cryptology ePrint Archive,
Report 2019/458, 2019. https://eprint.iacr.org/2019/458.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applications
to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
pages 581–612. Springer, Heidelberg, August 2017.

GMNO18. Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù.
Lattice-based zk-SNARKs from square span programs. In David Lie, Mo-
hammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 556–573. ACM Press, October 2018.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985.

GR19. Alonso González and Carla Ràfols. Sublinear pairing-based arguments with
updatable crs and weaker assumptions. IACR Cryptology ePrint Archive,
2019:326, 2019.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Hei-
delberg, December 2006.

Gro10a. Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 321–340. Springer, Heidelberg, December 2010.

Gro10b. Jens Groth. A verifiable secret shuffle of homomorphic encryptions. Journal
of Cryptology, 23(4):546–579, October 2010.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016.

HBHW19. Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash
protocol specification: Version 2019.0.6 [overwinter+sapling], 2019.

JKS16. Ari Juels, Ahmed E. Kosba, and Elaine Shi. The ring of Gyges: Investi-
gating the future of criminal smart contracts. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 283–295. ACM Press, October 2016.

32

https://eprint.iacr.org/2019/458

KKKZ19. Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas.
Ouroboros crypsinous: Privacy-preserving proof-of-stake. In 2019 IEEE
Symposium on Security and Privacy, pages 157–174. IEEE Computer So-
ciety Press, May 2019.

KLO19. Jihye Kim, Jiwon Lee, and Hyunok Oh. Updatable crs simulation-
extractable zk-snarks with a single verification. Cryptology ePrint Archive,
Report 2019/586, 2019. https://eprint.iacr.org/2019/586.

KMP16. Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for
signatures from identification schemes. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 33–61.
Springer, Heidelberg, August 2016.

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In 2016 IEEE Symposium on Security and
Privacy, pages 839–858. IEEE Computer Society Press, May 2016.

KZM+15. Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Char-
alampos Papamanthou, Rafael Pass, abhi shelat, and Elaine Shi. C∅c∅:
A framework for building composable zero-knowledge proofs. Cryptol-
ogy ePrint Archive, Report 2015/1093, 2015. https://eprint.iacr.org/
2015/1093.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012.

Lip13. Helger Lipmaa. Succinct non-interactive zero knowledge arguments from
span programs and linear error-correcting codes. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages
41–60. Springer, Heidelberg, December 2013.

Lip19. Helger Lipmaa. Simulation-extractable snarks revisited. Cryptology ePrint
Archive, Report 2019/612, 2019. https://eprint.iacr.org/2019/612.

LP19. Chaoyun Li and Bart Preneel. Improved interpolation attacks on cryp-
tographic primitives of low algebraic degree. Cryptology ePrint Archive,
Report 2019/812, 2019. https://eprint.iacr.org/2019/812, to appear
at SAC’19.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128.
ACM Press, November 2019.

MGGM18. Alexander Mühle, Andreas Grüner, Tatiana Gayvoronskaya, and Christoph
Meinel. A survey on essential components of a self-sovereign identity. Com-
puter Science Review, 30:80–86, 2018.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, pages 238–252. IEEE Computer Society Press, May
2013.

PS96. David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of
LNCS, pages 387–398. Springer, Heidelberg, May 1996.

33

https://eprint.iacr.org/2019/586
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2019/612
https://eprint.iacr.org/2019/812

RST18. Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. Cryptanalysis
of low-data instances of full LowMCv2. IACR Trans. Symm. Cryptol.,
2018(3):163–181, 2018.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer
Society Press, October 1999.

Sah01. Amit Sahai. Simulation-sound non-interactive zero knowledge. Technical
report, IBM RESEARCH REPORT RZ 3076, 2001.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–
252. Springer, Heidelberg, August 1990.

SK95. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a prac-
tical solution to the implementation of a voting booth. In Louis C. Guillou
and Jean-Jacques Quisquater, editors, EUROCRYPT’95, volume 921 of
LNCS, pages 393–403. Springer, Heidelberg, May 1995.

A Omitted Primitives

A.1 Non-Interactive Zero-Knowledge

Let RGen be a relation generator, such that RGen(1λ) returns a polynomial-
time decidable binary relation R = {(x, w)}. Here, x is the statement and w is
the witness. We assume that λ is explicitly deducible from the description of
R. The relation generator also outputs auxiliary information auxR that will be
given to the honest parties and the adversary. Let LR = {x : ∃w, (x, w) ∈ R}
be an NP-language. Non-interactive zero-knowledge (NIZK) proofs and argu-
ments in the CRS model consist of algorithms (KGencrs,P,V,Sim), and satisfy
the following properties: completeness (for all common reference strings crs

generated by KGencrs and (x, w) ∈ R, we have that V(crs, x,P(crs, x, w)) = 1),
zero-knowledge (there exists a simulator Sim that outputs a simulated proof such
that an adversary cannot distinguish it from proofs computed by P(crs, x, w)),
soundness (an adversary cannot output a proof π and an instance x 6∈ LR such
that V(crs, x, π) = 1. Moreover, knowledge soundness steps further and says
that for any prover generating a valid proof there is an extractor Ext that can
extract a valid witness.

A.2 QAPs and R1CS

Quadratic Arithmetic Programs (QAPs) have been introduced by Gennaro et
al. [GGPR13] as a language where for an input x and witness w, (x, w) ∈ R can
be verified by using a parallel quadratic check, and that has an efficient reduction
from a well-known language (either Boolean or Arithmetic) Circuit-SAT.

Definition 14 (QAP). A quadratic arithmetic program over a field F is a
tuple of the form (

F, n,{Ai(X),Bi(X),Ci(X)}i=mi=0 ;D(X)
)

34

where Ai(X),Bi(X),Ci(X),D(X) ∈ F[X], define a language of statements
(s1, . . . , sn) ∈ F and witnesses (sn+1, . . . , sm) ∈ Fm−n such that(

m∑
i=0

siAi(X)

)
·

(
m∑
i=0

siBi(X)

)
=

(
m∑
i=0

siCi(X)

)
+ H(X) ·D(X) (2)

where s0 = 1 and for some degree-(d − 2) quotient polynomial H(X), where d
is the degree of D(X). Let the degrees of all Ai(X),Bi(X) and Ci(X) are at
most d− 1.

We note that all the considered SNARK constructions are for QAPs defined over
a bilinear group. Thus we consider relation generators RGen of the following form:

Definition 15 (QAP relation). A QAP relation generator RGen is a PT al-
gorithm that on input λ returns a relation description R = (pars, n, (A,B,C) ∈
F(d−1)[X]m−1,D ∈ F(d)[X]) where pars is a bilinear group whose order p de-
fines F := Zp and n ≤ m. Fix x ∈ Fn and w ∈ Fm−n, we define R(x, w) = 1
if there exists H(X) ∈ F[X] so that Eq. (2) holds for x = (s1, . . . , sn) and
w = (sn+1, . . . sm).

For reducing arithmetic circuits to QAP relations, circuits can first be trans-
formed to a system of rank-1 quadratic equations (R1CS) which is latter trans-
formed into a QAP [BCG+13]. The R1CS relation over a field F consists of
instance-witness pairs ((A,B,C,v),w) with matrices A,B,C ∈ Fn×m and vec-
tors v,w such that (Az) ◦ (Bz) = Cz with z = (1,v,w) ∈ Fm where ◦ denotes
the entry-wise product. For capturing arithmetic circuit satisfaction, A,B,C
represent the gates, v the public inputs, and w the private inputs and wire
values.

A.3 Public-key Encryption

Definition 16. A public key encryption scheme Ω = (KGen,Enc,Dec) consists
of the following PPT algorithms:

KGen(1λ) : Given a security parameter λ it outputs the secret key sk and public
key pk with message spaceM.

Enc(pk,m) : Given a public key pk and a message m ∈M it outputs a ciphertext
c.

Dec(sk, C) : Given a secret key sk and a ciphertext c it outputs a message m ∈
M∪ {⊥}.

We say that an encryption scheme Ω is perfectly correct if for all κ ∈ N, for
all (sk, pk) ← KGen(1λ) and for all m ∈ M it holds that Dec(sk,Enc(pk,m)) =
m. Below, we recall the standard notion of indistinguishability under chosen
plaintext attacks (IND-CPA security).

35

Definition 17 (IND-CPA). A public key encryption scheme Ω is IND-CPA
secure, if for all PPT adversaries A it holds that

Pr

(sk, pk)← KGen(1λ), b←$ {0, 1},
(m0,m1, st)← A(pk), b∗ ← A(Enc(pk,mb), st) :

b = b∗

 ≈λ 1

2
.

A.4 Schnorr Signatures

We recall the Schnorr signature scheme [Sch90] together with the required Adapt
algorithm (cf. [DS19]) in Fig. 4. It can be shown to provide EUF-CMA security
in the random oracle model (ROM) under the DLP in G by using the now
popular rewinding technique [PS96] (cf. also [KMP16] for a recent treatment on
tightness and optimality of such reductions). In the following we present Schnorr
signatures with respect to a common setup, i.e., PP← PGen(1λ) are given to all
instances of KGen and let GGen be a group generator that on input 1λ outputs
the description of a prime order group G = (G, g, p) with order p s.t. λ = log2 p
and generator g. Recall, that in addition Schnorr requires a collision resistant
hash function H : G ×M → Zp (formally sampled uniformly at random from
a family {Hk}k∈K of hash functions) and thus we have PP := (G, H) (which we
assume to be an implicit input to all algorithms). We recall a lemma from [DS19]
showing that Schnorr signatures using the Adapt algorithm in Fig. 4 satisfies the
signature adaption notion in Definition 8.
Lemma 1 ([DS19]). Schnorr signatures are adaptable according to Definition 8.

A.5 Groth’s Strong One-Time Signatures

In Fig. 5 we recall the strong one-time signature scheme from Groth [Gro06] and
its security below:
Theorem 4 ([Gro06]). Assuming hardness of computing discrete logarithms
and collision-resistance of the hash function, the scheme (PGenots,KGenots,Signots,
Verifyots) described in Fig. 5 is a strong one-time signature scheme for signing
messages m ∈ {0, 1}∗ with perfect correctness.

A.6 BDH Knowledge Assumption

Let BGen be a PPT algorithm that, on input a security parameter λ, outputs
BG = (p,G1,G2,GT , e, g, ĝ) for generators g and ĝ of G1 and G2, respectively,
and Θ(λ)-bit prime p.

Assumption 1 (BDH-Knowledge Assumption [ABLZ17]) We say that BGen
is BDH-KE secure for R if for any λ, (R, auxR) ∈ im(R(1λ)), and PPT adver-
sary A there exists a PPT extractor ExtBDH

A , such that

Pr

r ←r RND(A),

(V, V̂ ||a)← (A||ExtBDH
A)(R, auxR;ωA) :

e(V, ĝ) = e(g, V̂) ∧ ga 6= V

 ≈λ 0.

36

PGen(1λ)

- G ← GGen(1λ); H ←$ {Hk}k∈K;
- return PP := (G, H);

KGen(PP):

- Parse PP = ((G, g, p), H);
- x←$Zp;
- return (sk, pk) := (x, gx).

Sign(sk,m):

- Parse sk = x;
- r←$Zp; R := gr; c := H(R‖m); y := r + x · c mod p
- return σ := (c, y).

Verify(pk,m, σ):

- Parse pk = gx;σ = (c, y);

- if c = H((gx)−cgy,m) return 1 else return 0.

Adapt(pk,m, σ,∆):

- Parse pk = gx; σ = (c, y); ∆ ∈ Zp;
- pk′ := gx · g∆; y′ := y + c ·∆ mod p;
- return σ′ := (c, y′).

Fig. 4. Schnorr signatures.

Note that the BDH assumption can be considered as a simple case of the PKE
assumption of [DFGK14] (where A is given as an input the tuple {(gxi , ĝxi)}ni=0

for some n ≥ 0, and assumed that ifA outputs (V, V̂) then she knows (a0, a1, . . . , an),
such that V = g

∑n
i=0 aix

i

as used in the case of asymmetric pairings in [DFGK14].
Thus, BDH can be seen as an asymmetric-pairing version of the original and by
now well established KoE assumption due to Damgård [Dam92].

37

PGenots(1
λ)

- G ← GGen(1λ); H ←$ {Hk}k∈K;
- return PP := (G, H);

KGenots(PP):

- Parse PP = ((G, g, p), H);
- xs, ys, rs, ss ←$Zp;
- fs := gxs ; hs := gys ; cs := grss · hsss ;
- return (sk, pk) := ((xs, ys, rs, ss), (fs, hs, cs)).

Signots(sk,m):

- Parse sk = (xs, ys);
- r←$Zp; z := xs(rs − r) + ys · ss −H(m) · y−1

s mod p
- return σ := (r, z).

Verifyots(pk,m, σ):

- Parse pk = (fs, hs, cs);σ = (r, z);

- if cs = gH(m) · frs · hss return 1 else return 0.

Fig. 5. Groth’s strong one-time signature scheme.

38

	SoK: Lifting Transformations for Simulation Extractable Subversion and Updatable SNARKs

