
SoK: Hardware Accelerated Modular Multiplication for ZKProofs
Erdinc Ozturk1, Justin Drake2, Sean Gulley3, Simon Peffers3, Kelly Olson3

Abstract
This talk focuses on hardware acceleration of modular multiplication and its application
to the blockchain ecosystem. While there have been many exciting new developments in
computer science and cryptography over the past decade, less effort has been spent on how
to make these new techniques computationally practical. By increasing the performance of
modular multiplication, novel cryptographic techniques like VDFs, SNARKs, and Accumu-
lators can become feasible, enabling blockchain protocols to reduce their compute, storage,
and networking requirements. This talk will discuss techniques for optimization across CPU,
GPU, FPGA, and ASIC architectures, as well as both algorithmic and numerical represen-
tation techniques that enable improved performance. We will provide concrete data from
recent optimization work on different architectures for RSA-based cryptography, and discuss
the viability of this approach to improve blockchain security and scalability. The talk will
conclude with a discussion of developments that have <1% the latency of a CPU system,
and over 1000 times the throughput of a CPU core.

Background and Motivation
The goal of this talk is to discuss the methods and benefits of hardware acceleration for the
blockchain industry. While it is true that in order to scale blockchain protocols computer
science and algorithmic innovations are necessary, scaling blockchain protocols also consists of
making trade-offs between compute, storage, and networking at the protocol and application
layers. One simple example is the use of public key recovery in Bitcoin and Ethereum
transactions. Rather than providing you public key within your transaction, it is possible to
provide only a signed message from which the validator can ‘recover’ your public key. This
approach reduces the networking requirements at the expense of increased computation for
the validator.

Another approach to improve scaling is to move the compute and storage requirements away
from the network/validator side to the client side. This can be done through the generation
of cryptographic proofs that can be quickly verified. One of the ‘proofs’ most widely known in
the blockchain industry is ‘proof-of-work’. Proofs of work enable a miner to demonstrate that
they have completed some expected amount of work manipulating the blockcheader through
modifications to block header fields like nonce, merkle root, and timestamp. Once the proof
is submitted to the network, nodes can quickly verify that the proof is valid at orders of
magnitude less cost and time as was required to generate the proof. Proof of work is the
strongest example of hardware acceleration in the generation of cryptographic proofs. The
speed at which proofs for a given difficulty can be created with current hardware is several
thousand times faster than a single CPU core at approximately a 250,000-fold reduction in
energy cost. To date, over $ 4 billion dollars has been spent on hardware due to the incentive

1 Sabanci University
2 Ethereum Foundation
3 Supranational

1



structure of current blockchain protocols.

Indeed as we look more broadly at the internet ecosystem, we see the use of custom hardware
to scale internet services and reduce the total cost of operations. Such hardware is targeted
at use cases such as networking, graphics, transcoding, sound, and AI. More and more, large
internet service providers are leveraging programmable and custom hardware such as FPGAs
and ASICs for algorithms and cryptographic protocols like compression and transport-layer
security (TLS). Even modern general purpose CPUs now have dedicated instructions and
hardware accelerators for hashing (SHA) and encryption (AES).

We believe that hardware acceleration will be an essential component to enabling blockchains
protocols to achieve the scalability required for practical use. Today blockchain protocols are
limited by their ‘on-chain’ compute and storage capacities, as well as by their networking
bandwidth. We believe that through the improvement of ‘off-chain’ hardware and client-
side proof generation, we can drastically improve the performance of blockchain networks.
This hardware acceleration can take two forms: 1) Better utilization of existing resources
(e.g CPU, GPU) through improved software and algorithmic implementations and 2) The
development of custom hardware (e.g. FPGA and ASIC) and novel algorithms suited for their
hardware configuration and available resources. In this talk we will discuss the performance
gains from each approach as applied to RSA group operations.

Novel Cryptography from RSA Groups
Over the past two years there have been a number of novel cryptographic techniques that are
built on ‘groups-of-unknown-order’. The two most discussed of these groups are RSA groups,
where the factorization of the modulus is unknown, and class groups. Throughout this talk
we will discuss acceleration of the underlying arithmetic for operations in RSA groups in
particular. We will cover CPU, FPGA, and ASIC architectures and their relative perfor-
mance. However before beginning, we would like to discuss three interesting applications
that become practical through the acceleration of these group operations:

Verifiable Delay Functions (VDF) - VDFs provide a proof that a certain amount of
sequential work has been completed. You can think about it as a sequential ‘proof-of-work’
that can not be parallelized. VDFs provide a succinct proof that a very large amount of
sequential work has been completed and these proofs require less bandwidth than similar
interactive protocols for sequential-proof-of-work. VDFs can be used to create unbiased,
unpredictable, and unstoppable randomness that can be used in blockchain protocols for
things like committee selection or application level randomness.
Accumulators - A cryptographic accumulator is a primitive that produces a succinct com-
mitment to a set of elements, as well as provides short membership and non-membership
proofs for individual elements in the set. Unlike Merkle trees, RSA accumulators enable
a constant size membership proof which reduces bandwidth requirements of the network.
However, this benefit likely comes at the cost of increased computation and storage client-
side.
SNARKs - One of the most promising approaches to blockchain scalability is through
SNARKs. Recently, a new polynomial commitment scheme that can be used in SNARKs

2



was released that can be built off of RSA groups. SNARKs enables a client to succinctly
prove a statement is true (e.g. I am spending less coins than I own). They can be used
to improve the scalability of blockchain protocols through transaction aggregation and they
can add functionality such as privacy. SNARKs reduce storage and bandwidth requirements
on the network at the cost of increased computation client-side.

Problem Statement: Group Operations
Now that we understand the potential of accelerating RSA operations, we’d like to briefly
explain the underlying computations that needs to be accelerated to make the above tech-
niques practical. The foundation of cryptosystems and cryptographic techniques today are
predominantly built atop specific groups/curves and the operations on/over those groups. As
a simple example, ECDSA uses elliptic curves and group operations such as point multipli-
cation to enable digital signatures and their verification. In the techniques we are discussing
today we are focusing on RSA groups, one of the most widely used systems today. RSA group
operations today are predominantly made up of modular exponentiation of large integers.
Arithmetically this often boils down to the multiplication and reduction of large integers. In
some cases we want our optimization efforts to minimize the latency of a single operation
(as is the case in VDFs), while in others we are focused on maximizing the throughput for
a given architecture (as is the case with DARKs). Across this latency and throughput spec-
trum there are a variety of tradeoffs that can be made that will impact the cost, power, and
performance of the resulting hardware.
With the opportunity and problem statement in mind, we will discuss algorithmic and hard-
ware approaches to accelerating these operations.

Algorithms
One of the first places to look when accelerating cryptography is to evaluate various algorith-
mic approaches to the problem. RSA is a family of algorithms driven by low level primitives
such as modular multiplication. To begin it is best to understand what group operations
are consuming the most compute resources/time, and then investigate the low-level algo-
rithms that are used to implement the primitives of higher-level cryptographic protocols. It
is important to understand that every algorithm represents a unique set of tradeoffs between
latency, throughput, power, and area. When selecting an algorithm it is imperative that you
understand both the desired goal as well as the underlying hardware that is available for you
to use. Algorithmic decisions can not be made in isolation and need to consider the target
implementation.

While investigating the the RSA group operations, we discovered that modular multiplication
and modular squaring were consuming the vast majority of the compute cycles. In order to
accelerate the above mentioned cryptographic constructions, we began to evaluate various
algorithms and representations that could be used to accelerate these operations. Some
such algorithms include schoolbook multiplication, Montgomery multiplication, and Barrett
reduction, while representations include polynomial form and residue numeral system. While
we won’t spend a lot of time in the talk discussing the various algorithmic approaches, we
will provide a short summary of these algorithms as given at the 2019 Stanford VDF Day
(https://www.youtube.com/watch?v=ITf4Wt2YgDE).

3

https://www.youtube.com/watch?v=ITf4Wt2YgDE


When it comes to representations, many people will understand that there are a variety of
ways to represent a number. For example, the number ‘100’ can be represented as 100, 99+1,
50+50, 25∗ 4, etc. In the talk we will briefly discuss representations such as Montgomery
and polynomial and how some approaches take advantage of these representations to improve
performance.

Hardware Implementation
CPU Implementation
The first step of hardware optimization is to perform a simple implementation of the op-
eration that you would like to accelerate. For the purposes of this talk we will be focus-
ing on improving the latency and throughput of a modular squaring operation. To begin
we implemented a 2048-bit square and reduce in Python and achieved a time of ∼ 5000
nanoseconds (ns). Python is often a good place to begin when implementing a new al-
gorithm as it teaches us the ‘complexity’ of the algorithm. However, since large integer
modular squaring is already commonly done, we quickly moved on to more performant li-
braries. One library that is particularly suited to this type of problem is GMP. GMP is a
well optimized library for a variety of arithmetic operations. Through the use of GMP we
were able to achieve ∼ 1200ns per operation. In the talk we will discuss how GMP is able to
get improved performance through the use of special CPU features such as SIMD and carry
chain flags (e.g. mulx/adcx/adox). We will briefly discuss the various SIMD options that are
widely available or soon-to-be-available (AVX2 and AVX512) as well as their benefits and
drawbacks. Finally, we will demonstrate how it is often possible to accelerate your specific
function through hand written assembly, where we were able to achieve a modular squaring
in ∼ 1000ns. This section will conclude with a graph of latency and throughput for the
various CPU implementations.

GPU Implementation
The next part of the talk will focus on GPU implementations. GPUs offer increased paral-
lelism over CPUs while still operating at relatively high frequencies (e.g. 1GHz+). GPUs can
be programmed in languages like OpenCL or CUDA, or compilers can be used that convert
C to these GPU languages. For the purposes of our acceleration, which was predominantly
latency focused, GPUs were not a good hardware candidate. While GPUs are highly parallel,
affordable, and easy to purchase, we will discuss some of their drawbacks as well such as the
round-trip latency to move off the CPU, as well their lower frequencies. This section of the
talk will conclude with some naive latency and throughput numbers on a modern GPU.

FPGA Overview
In this part of the talk we will discuss what an FPGA is, and also discuss its hardware
characteristics such as size, resources, frequency, and cost. We will provide a comparison of
FPGA vs. CPU resources and discuss circumstances where an FPGA may be the appropriate
hardware. We will discuss why different algorithms may be more suited for an FPGA based
off of the available resources, lookup tables, and the amount of work per clock that can be
done. We will also discuss the drawbacks of FPGAs including their cost, maximum frequency,
and complexity of programming.

4



FPGA Implementation
In this part of the talk we will discuss the novel algorithm that was developed to achieve a
low latency modular squaring for VDFs. We will discuss why the algorithm is appropriate
given the goal (low latency) and the resources of the FPGA. The algorithm we will be
discussing is the ‘Ozturk’ design, developed by the co-author of this paper and available here:
https://eprint.iacr.org/2019/826. We will briefly discuss the polynomial representation and
the use of LUTs used in the design that delivered a 20x speedup (∼ 70ns per modular
squaring) over our CPU implementation. The implementation of this design was done
in System Verilog and designed to run in the AWS FPGA Cloud (F1). We will provide
information about the resource utilization of the algorithm (DSPs, BRAMs/URAMs, LUTs)
and the frequency it is able to achieve. We will also discuss how this design was used to
solve a 20-year-old outstanding cryptographic puzzle (https://www.wired.com/story/a-pro-
grammer-solved-a-20-year-old-forgotten-crypto-puzzle/) by Ron Rivest in only two months.
Finally we will discuss the FPGA design competitions that we have held since the initial
design where the speed of the design was improved a further two fold.

Implementation Code
Code will be made available at https://github.com/supranational/

Future Plans - ASIC Implementation and Manufacturing
This part of the talk will discuss our future plans for hardware acceleration of these RSA
operations. We will briefly discuss what an ASIC is, and why it has better performance than
an FPGA (e.g. resources, frequency, cost, etc.). After this we will discuss the determinants
of ASIC performance such as algorithm, implementation, process technology, and further
optimizations like custom cells. We will then provide performance estimates for a modern
ASIC based off synthesis and place-and-route of the design in EDA tools (∼ 5ns). We will
conclude the presentation with a summary table that shows the performance results and
estimates across CPU, GPU, FPGA, and ASIC. These results will include data such as area,
frequency, power, latency, throughput, and cost as applicable. The conclusion of the talk will
briefly discuss the intended next steps for our hardware acceleration work. We will provide
information about where our implementations can be found as all of this work is intended
to be open source. We will also briefly mention the other areas that interested contributors
can get involved as we move towards production (e.g. firmware, industrial design, software,
etc.)

5

https://eprint.iacr.org/2019/826
https://www.wired.com/story/a-programmer-solved-a-20-year-old-forgotten-crypto-puzzle/
https://www.wired.com/story/a-programmer-solved-a-20-year-old-forgotten-crypto-puzzle/
https://github.com/supranational/

