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Introduction

Recent zk-SNARK constructions such as Marlin and PLONK relying on Polynomial 
commitment schemes are not inherently tied to R1CS constraints to specify the statement 
to be proven. This is roughly because the verifier equation is checked "in the clear" on a 
random opening of the prover polynomials, rather than "in the exponent" using a pairing. 
We provide a framework to capture more general and flexible constraints which we call 
turbo-PLONK programs. We give an example of how this framework allows for more 
concise representation of fixed-base elliptic curve scalar multiplication (only 1 turbo-PLONK 
gate for each two input bits), a primitive useful for constructing Pedersen hashes. We also 
include benchmarks of proving time for scalar multiplication on the Grumkin curve (a 255 
bit curve embedded over bn254). Our results indicate a 2x improvement over Groth16.

Turbo PLONK programs  

A turbo-PLONK program  can be thought of as  sequence of states  , where the 

state size  is chosen by the program designer. The proof size and prover run time 

increase linearly in  and standard choices are 3 or 4.
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A valid execution trace   for satisfies 's transition gate and copy 

constraint.
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transition gate -   A  transition constraint of  is a  -variate degree at most  

polynomial  , where  is the degree  of ,  and is recommended to be set to , 

and  is the selector number. 
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The transition gate of  consists of all the transition constraints together with  selector 

vectors .  is said to satisfy the transition gate if for each transition 
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constraint  ,  .i ∈ [t] P(T ,…,T ,T ,…,T , q (i),…, q (i)) =i,1 i,w i+1,1 i+1,w 1 ℓ 0

copy constraint - this is a partition of   into distinct sets  .  is said to satisfy 

the copy constraint if  whenever  and  belong to the same set 

in the partition.

w × t {S }i T

T =i,j Ti ,j′ ′ (i, j) (i , j )′ ′

The copy constraint can be thought of as enabling memory access, since we can force a 
subsequent value in the execution trace to be equal to a preceding one.

The special case of arithmetic circuits 

 

 Let's see how an arithmetic circuit can be represented in this format. Every row will 
correspond to a gate, and the row values will be the incoming and outgoing wire values of 

the gate; so to represent fan-in  circuits we'll use . For example, for fan-in 2 

the row values  will correspond to the left,right and output wire values of the 

gate associated with the row. 

t w = t+ 1

v , v , v1 2 3

The transition constraints will be somewhat "degenerate" in the sense that we won't use the 

"next row" values . They will check if the correct input and output 

relations hold inside the row according to whether it's an addition or multiplication gate. 

This can be done with 3 selectors and one constraint polynomial  of degree  . 

E.g., for fan-in 2 we use:

T ,…Ti+1,1 i+1,w

P t+ 1

 P(q , q , q ,x ,x ,x ) :L R M 1 2 3 = q ⋅L x +1 q ⋅R x +2 q ⋅M x x −1 2 x3

By setting  for an addition gate and 

 for a multiplication gate, we can see the above equation 

checks the correct input/output relation in both cases.

q (i) =L q (i) =R 1, q (i) =M 0

q (i) =L q (i) =R 0, q (i) =M 1

The copy constraint will enforce the wiring of the circuit. For example, if the left wire of the 

4th gate is the output wire of the second gate, we will enforce .T =2,3 T4,1



Common techniques

Before describing our main example, we discuss two basic techniques that will be used in 
it.

Look Ups

We describe a basic primitive that will be useful in the next section. Suppose we have two 

selectors  We wish to enforce that, say, the first value in row  , is equal to  

where  is the second value in the same row. This can be obtained by the constraint 

q , q .1 2 i q (i)b

b

 x =1 −q ⋅1 (x −2 2) + q ⋅2 (x −2 1)

A convenient trick that we will use in the next section, is that in the special case where we 
wish to choose between two values, and their negations, e.g. according to the third row 
value being 1 or -1, we can do it using the equation 

.x =1 (−q ⋅1 (x −2 2) + q ⋅2 (x −2 1)) ⋅ x3

Interleaving PLONK Gates

After designing several PLONK transition gates  (recall that a transition gate means a set  of

 - variate polynomials, together with values for  selector polynomials.) , one may 

wish to  design a program that enforces a different subset of these constraints depending 

on the row. For example, given two gates we might want to enforce only on 

some row transitions, only  on other row transitions, and both constraints on the rest.  

The generic way to achieve this is to add two selectors  that will be zero or one 

according to whether we want the corresponding gate to be activated at a given row. Then 

we can multiply each constraint  in  by , and define the new gate's constraints 

to be the union of these constraints from both gates.
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Example: Fixed-base scalar multiplication

The NAF scalar representation

 We assume our scalar  is in the range   for  smaller than half the elliptic 

curve group order having  the form    for some integer  . (Allowing a general 

scalar requires some additional work which we omit here for simplicity of presentation.) 

When  s is in this range, we can write    , where 

, and . Thus, we think of our input as consisting 

of   input quads  and one input bit .  

s {1, ..,M} M

2 ⋅ 4 −n 1 n

s = t+ b ⋅∑i=0
n−1

i 4i

b ∈i {−3,−1, 1, 3} t ∈ {4 , 4 +n n 1}

n {b }i t

Our program consists of  rounds where in round , we add either 

, where is a precomputed power of our actual 

generator. We initialize our sum as .  An optimization we use to reduce program width, 

is that we  only explicitly represent "intermediate sums" of our scalar, and not the actual 
input quads (the intermediate sums are more convenient than the quads in checking the 

correct scalar was used). We define the intermediate sums as follows: 

 , and for   . 

Induction shows we get .

n i

−3[g ],−1[g ], 1[g ], 3[g ]i i i i g =i 4 [g]n−i

t[g]

s

a =0 t/4 ,a =n
1 t/4 +n−1 bn−1 i ∈ {2,…,n} a =i 4 ⋅ a +i−1 bn−i

a =n s

Another optimization we use is that by squaring the difference of two intermediate sums, 

we cancel the effect of the sign of the input quad, which is useful since the   coordinate 

of the point we want to select only depends on the magnitude on the difference. (And 
needing to explicitly represent this magnitude would again increase the width of the final 
program.) 

x

2-bit NAF addition gate

We describe a width 4 program that given row values  

, checks that 

 .

(x ,y ,x ,a ), (x ,y ,x ,a )1 1 α i−1 2 2 α,2 i

(x ,y ) =2 2 (x ,y ) +1 1 (a −i 4a )[g ]i−1 i

Selecting the correct point to add



The first step is to use a variant of the lookup method from the previous section to choose 
the coordinates of the correct point out to add in a given round.

Let's focus on a specific round  and denote . 

Let's also denote by  the point we wish to add in this round according to the input; 

thus is one of the points in the set . 

We can recover   via the following relationship:

i ∈ [n] g =i (x ,y ), 3[g ] =β β i (x ,y )γ γ

(x ,y )α α

(x ,y )α α {(x ,y ), (x ,−y ), (x ,y ), (x ,−y )}β β β β γ γ γ γ

xα

x +
−8

(a − 4a ) − 9i i−1
2

β x =
8

(a − 4a ) − 1i i−1
2

γ xα

⟹ (a −i 4a ) +i−1
2

8
x − xγ β =

8
9x − xβ γ

xα

We can represent the precomputed constants by selectors:

q =xα,1 , q =
8

x − xγ β
xα,2 8

9x − xβ γ

⟹ (a −i 4a ) q +i−1
2

xα,1 q =xα,2 xα

By storing as a distinct wire value, we can extract the y-coordinate, , using a cubic 

polynomial identity

xα yα

y +
(x − x )β γ

(x − x )(a − 4a )α γ i i−1
β y =

3(x − x )γ β

(x − x )(a − 4a )α β i i−1
γ yα

⟹ (x +α 3(x − x )β γ

3y − yβ γ
)(a −

3(x − x )β γ

x y − x yβ γ γ β
i 4a ) =i−1 yα

We can also represent this via two precomputed selectors

q =yα,1 , q =
3(x − x )β γ

3y − yβ γ
yα,2 )

3(x − xβ γ

x y − x yβ γ γ β

⟹ (x q +α yα,1 q )(a −yα,2 i 4a ) =i−1 yα



We can recover  by computing , where is a constant that describes 

the short weierstrass curve in question (for our BN254 embedded curve, )

yα
2 x +α

3 bcurve bcurve

b =curve −17

Finally, we also check that the differences of intermediate sums fall within the prescribed 
range via the equation

(a −i 4a +i−1 3)(a −i 4a +i−1 1)(a −i 4a −i−1 1)(a −i 4a −i−1 3) = 0

We've seen how to select the correct point to add in a given round, let's now see how to 
actually add it.

Adding the selected point

As we are adding in each round powers of disjoint magnitude of our generator, we can use 

an incomplete affine addition formula that doesn't hand repeated   coordinate. To add 

point with point , to obtain output , the formula is:

x

(x ,y )1 1 (x ,y )α α (x ,y )2 2

x =2 ( ) −
x − xα 1

y − yα 1 2
x −α x1

y =2 ( )(x −
x − xα 1

y − yα 1
1 x )−2 y1

Expressed as an identity we can evaluate via a gate, we have

(x +2 x +α x )(x −1 α x ) −1
2

(y −α y ) =1
2

0
(y +2 y )(x −1 α x )−1 (y −α y )(x −1 1 x ) =2 0

Affine addition using precomputed selectors

x-coordinate check



(x +2 x +1 x )(x −α α x )1 2

+ 2(a −i 4a )(x q +i−1 α yα,1 q )yyα,2 1

− y −1
2 b =curve 0

y-coordinate check

(y +2 y )(x −1 α x ) −1 ((a −i 4a )(x q +i−1 α yα,1 q ) −yα,2 y )(x −1 1 x ) =2 0

Initialization gate

 

What is left to do is to add the "offset" t. We do this by initializing the "starting point" 

 as either  or , according to whether the value of  is  or 

 .We also check that   is in this range using the corresponding degree two 

constraint.

(x ,y )0 0 (4 )[g]n (4 +n 1)[g] a0 1

1 + 1/4n a0

The Final Program

 

We summarize the ideas above and describe the program. We will have n+1 rows each 

containing values labeled . The 2-bit NAF addition gate will be active on the 

first n rows.In the first row the initialization gate will also be active.

x ,y ,x ,ai i α
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⎛x0

x1
⋮
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⋮
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⋮
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⋮
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⎟
⎟
⎞

 



Implementation and Benchmarks

Pedersen hash benchmarks

 

N.B. all benchmarks were measured on a Surface Pro 6, with an i7-8650U CPU at 2.1GHz, 4 
physical cores and 16GB RAM.

Our open source library, barretenberg (https://github.com/AZTECProtocol/barretenberg), 
contains an implementation of TurboPLONK over the BN254 curve. This variant 
implements Pedersen hashes using our fixed-base scalar multiplication gate.  

We benchmarked barretenberg against the current fastest Groth16 prover that also 
supports the BN254 curve, Bellman. TurboPLONK is approximately five times faster than 
the Groth16 implementation. 

When comparing raw constraint counts, TurboPLONK requires 5 times fewer constraints 
than an equivalent R1CS-base SNARK

https://github.com/AZTECProtocol/barretenberg


It should be noted that a TurboPLONK constraint requires approximately twice as much 
prover 'work' than a Groth16 constraint. 20% of the Groth16 constraints are also bit 
decompositions; these binary gates are approximately 4 times as expensive for the prover 
in TurboPLONK than Groth16. (Since PLONK doesn't have the property that the scalars in 
prover computation are actually equal to the witness.)

Under this model, the TurboPLONK prover should be approximately 2.25 times faster than 
Groth16.

New advances in multi-scalar-multiplication over elliptic 
curves

 

The remaining speed advantage between the TurboPLONK prover and the Groth16 prover 
can be explained by considering the relative speeds of the two libraries when computing 
multi-scalar-multiplications in G1, where the bulk of prover time is spent



Using original techniques for performing this algorithm, Barretenberg can compute over 1 
million scalar multiplications in < 1 second on average consumer-grade hardware.

Pippenger's multi-exponentiation algorithm is the fastest known method to compute a 
multiple scalar-multiplication over different bases. Our new contribution is the observation 
that, when computing multi-products, using the affine point addition formula requires 
substantially fewer field multiplications than formulae for projective and jacobian 
coordinates.

When evaluating affine point addition, the formula is:

λ =  mod p
x − x2 1

y − y2 1

x =3 λ −2 (x +2 x ) mod p1

y =3 λ(x −1 x ) −3 y  mod p1

Computing  requires a modular inverse, which is orders of magnitude more expensive 

than a field multiplication.

λ

However, the Pippenger multi-products can be arranged to produce sequences of 
independent point additions. That is, the outputs of additions in the sequence are not 
inputs to any additions in the sequence.



This allows for the use of Montgomery's trick to compute batch modular inverses

∀i ∈ {1,…,n} : d =i a
j=1

∏
i−1

j

s = (d a )n n
−1

∀i ∈ {1,…,n} : e =i s a
j=i+1

∏
n

j

∀i ∈ {1,…,n} : r =i d ei i

Assuming a sufficiently large , the cost of a batched modular inverse is 3 field 

multiplications per inverse. This produces a cost of 6 field multiplications to compute a 
point addition.  

For short Weierstrass curves, the traditional mixed-addition (projective) formula requires 11 
field multiplications.

n

 


