
Proposal: The Turbo-PLONK program syntax
for specifying SNARK programs

Ariel Gabizon and Zachary J. Williamson (Aztec Protocol)

Introduction

Recent zk-SNARK constructions such as Marlin and PLONK relying on Polynomial
commitment schemes are not inherently tied to R1CS constraints to specify the statement
to be proven. This is roughly because the verifier equation is checked "in the clear" on a
random opening of the prover polynomials, rather than "in the exponent" using a pairing.
We provide a framework to capture more general and flexible constraints which we call
turbo-PLONK programs. We give an example of how this framework allows for more
concise representation of fixed-base elliptic curve scalar multiplication (only 1 turbo-PLONK
gate for each two input bits), a primitive useful for constructing Pedersen hashes. We also
include benchmarks of proving time for scalar multiplication on the Grumkin curve (a 255
bit curve embedded over bn254). Our results indicate a 2x improvement over Groth16.

Turbo PLONK programs

A turbo-PLONK program can be thought of as sequence of states , where the

state size is chosen by the program designer. The proof size and prover run time

increase linearly in and standard choices are 3 or 4.

P v ∈ Fw

w

w

A valid execution trace for satisfies 's transition gate and copy

constraint.

T ∈ (F)w t P P

transition gate - A transition constraint of is a -variate degree at most

polynomial , where is the degree of , and is recommended to be set to ,

and is the selector number.

P 2w + ℓ d

P d P w + 1

ℓ

The transition gate of consists of all the transition constraints together with selector

vectors . is said to satisfy the transition gate if for each transition

P ℓ

q ,…, q ∈1 ℓ Ft T

constraint , .i ∈ [t] P(T ,…,T ,T ,…,T , q (i),…, q (i)) =i,1 i,w i+1,1 i+1,w 1 ℓ 0

copy constraint - this is a partition of into distinct sets . is said to satisfy

the copy constraint if whenever and belong to the same set

in the partition.

w × t {S }i T

T =i,j Ti ,j′ ′ (i, j) (i , j)′ ′

The copy constraint can be thought of as enabling memory access, since we can force a
subsequent value in the execution trace to be equal to a preceding one.

The special case of arithmetic circuits

 Let's see how an arithmetic circuit can be represented in this format. Every row will
correspond to a gate, and the row values will be the incoming and outgoing wire values of

the gate; so to represent fan-in circuits we'll use . For example, for fan-in 2

the row values will correspond to the left,right and output wire values of the

gate associated with the row.

t w = t+ 1

v , v , v1 2 3

The transition constraints will be somewhat "degenerate" in the sense that we won't use the

"next row" values . They will check if the correct input and output

relations hold inside the row according to whether it's an addition or multiplication gate.

This can be done with 3 selectors and one constraint polynomial of degree .

E.g., for fan-in 2 we use:

T ,…Ti+1,1 i+1,w

P t+ 1

 P(q , q , q ,x ,x ,x) :L R M 1 2 3 = q ⋅L x +1 q ⋅R x +2 q ⋅M x x −1 2 x3

By setting for an addition gate and

 for a multiplication gate, we can see the above equation

checks the correct input/output relation in both cases.

q (i) =L q (i) =R 1, q (i) =M 0

q (i) =L q (i) =R 0, q (i) =M 1

The copy constraint will enforce the wiring of the circuit. For example, if the left wire of the

4th gate is the output wire of the second gate, we will enforce .T =2,3 T4,1

Common techniques

Before describing our main example, we discuss two basic techniques that will be used in
it.

Look Ups

We describe a basic primitive that will be useful in the next section. Suppose we have two

selectors We wish to enforce that, say, the first value in row , is equal to

where is the second value in the same row. This can be obtained by the constraint

q , q .1 2 i q (i)b

b

 x =1 −q ⋅1 (x −2 2) + q ⋅2 (x −2 1)

A convenient trick that we will use in the next section, is that in the special case where we
wish to choose between two values, and their negations, e.g. according to the third row
value being 1 or -1, we can do it using the equation

.x =1 (−q ⋅1 (x −2 2) + q ⋅2 (x −2 1)) ⋅ x3

Interleaving PLONK Gates

After designing several PLONK transition gates (recall that a transition gate means a set of

 - variate polynomials, together with values for selector polynomials.) , one may

wish to design a program that enforces a different subset of these constraints depending

on the row. For example, given two gates we might want to enforce only on

some row transitions, only on other row transitions, and both constraints on the rest.

The generic way to achieve this is to add two selectors that will be zero or one

according to whether we want the corresponding gate to be activated at a given row. Then

we can multiply each constraint in by , and define the new gate's constraints

to be the union of these constraints from both gates.

2w + ℓ ℓ

G ,G1 2 G1

G2

q , qG1 G2

P Gi qGi

Example: Fixed-base scalar multiplication

The NAF scalar representation

 We assume our scalar is in the range for smaller than half the elliptic

curve group order having the form for some integer . (Allowing a general

scalar requires some additional work which we omit here for simplicity of presentation.)

When s is in this range, we can write , where

, and . Thus, we think of our input as consisting

of input quads and one input bit .

s {1, ..,M} M

2 ⋅ 4 −n 1 n

s = t+ b ⋅∑i=0
n−1

i 4i

b ∈i {−3,−1, 1, 3} t ∈ {4 , 4 +n n 1}

n {b }i t

Our program consists of rounds where in round , we add either

, where is a precomputed power of our actual

generator. We initialize our sum as . An optimization we use to reduce program width,

is that we only explicitly represent "intermediate sums" of our scalar, and not the actual
input quads (the intermediate sums are more convenient than the quads in checking the

correct scalar was used). We define the intermediate sums as follows:

 , and for .

Induction shows we get .

n i

−3[g],−1[g], 1[g], 3[g]i i i i g =i 4 [g]n−i

t[g]

s

a =0 t/4 ,a =n
1 t/4 +n−1 bn−1 i ∈ {2,…,n} a =i 4 ⋅ a +i−1 bn−i

a =n s

Another optimization we use is that by squaring the difference of two intermediate sums,

we cancel the effect of the sign of the input quad, which is useful since the coordinate

of the point we want to select only depends on the magnitude on the difference. (And
needing to explicitly represent this magnitude would again increase the width of the final
program.)

x

2-bit NAF addition gate

We describe a width 4 program that given row values

, checks that

 .

(x ,y ,x ,a), (x ,y ,x ,a)1 1 α i−1 2 2 α,2 i

(x ,y) =2 2 (x ,y) +1 1 (a −i 4a)[g]i−1 i

Selecting the correct point to add

The first step is to use a variant of the lookup method from the previous section to choose
the coordinates of the correct point out to add in a given round.

Let's focus on a specific round and denote .

Let's also denote by the point we wish to add in this round according to the input;

thus is one of the points in the set .

We can recover via the following relationship:

i ∈ [n] g =i (x ,y), 3[g] =β β i (x ,y)γ γ

(x ,y)α α

(x ,y)α α {(x ,y), (x ,−y), (x ,y), (x ,−y)}β β β β γ γ γ γ

xα

x +
−8

(a − 4a) − 9i i−1
2

β x =
8

(a − 4a) − 1i i−1
2

γ xα

⟹ (a −i 4a) +i−1
2

8
x − xγ β =

8
9x − xβ γ

xα

We can represent the precomputed constants by selectors:

q =xα,1 , q =
8

x − xγ β
xα,2 8

9x − xβ γ

⟹ (a −i 4a) q +i−1
2

xα,1 q =xα,2 xα

By storing as a distinct wire value, we can extract the y-coordinate, , using a cubic

polynomial identity

xα yα

y +
(x − x)β γ

(x − x)(a − 4a)α γ i i−1
β y =

3(x − x)γ β

(x − x)(a − 4a)α β i i−1
γ yα

⟹ (x +α 3(x − x)β γ

3y − yβ γ
)(a −

3(x − x)β γ

x y − x yβ γ γ β
i 4a) =i−1 yα

We can also represent this via two precomputed selectors

q =yα,1 , q =
3(x − x)β γ

3y − yβ γ
yα,2)

3(x − xβ γ

x y − x yβ γ γ β

⟹ (x q +α yα,1 q)(a −yα,2 i 4a) =i−1 yα

We can recover by computing , where is a constant that describes

the short weierstrass curve in question (for our BN254 embedded curve,)

yα
2 x +α

3 bcurve bcurve

b =curve −17

Finally, we also check that the differences of intermediate sums fall within the prescribed
range via the equation

(a −i 4a +i−1 3)(a −i 4a +i−1 1)(a −i 4a −i−1 1)(a −i 4a −i−1 3) = 0

We've seen how to select the correct point to add in a given round, let's now see how to
actually add it.

Adding the selected point

As we are adding in each round powers of disjoint magnitude of our generator, we can use

an incomplete affine addition formula that doesn't hand repeated coordinate. To add

point with point , to obtain output , the formula is:

x

(x ,y)1 1 (x ,y)α α (x ,y)2 2

x =2 () −
x − xα 1

y − yα 1 2
x −α x1

y =2 ()(x −
x − xα 1

y − yα 1
1 x)−2 y1

Expressed as an identity we can evaluate via a gate, we have

(x +2 x +α x)(x −1 α x) −1
2

(y −α y) =1
2

0
(y +2 y)(x −1 α x)−1 (y −α y)(x −1 1 x) =2 0

Affine addition using precomputed selectors

x-coordinate check

(x +2 x +1 x)(x −α α x)1 2

+ 2(a −i 4a)(x q +i−1 α yα,1 q)yyα,2 1

− y −1
2 b =curve 0

y-coordinate check

(y +2 y)(x −1 α x) −1 ((a −i 4a)(x q +i−1 α yα,1 q) −yα,2 y)(x −1 1 x) =2 0

Initialization gate

What is left to do is to add the "offset" t. We do this by initializing the "starting point"

 as either or , according to whether the value of is or

 .We also check that is in this range using the corresponding degree two

constraint.

(x ,y)0 0 (4)[g]n (4 +n 1)[g] a0 1

1 + 1/4n a0

The Final Program

We summarize the ideas above and describe the program. We will have n+1 rows each

containing values labeled . The 2-bit NAF addition gate will be active on the

first n rows.In the first row the initialization gate will also be active.

x ,y ,x ,ai i α

⎝
⎜
⎜
⎛x0

x1
⋮
xn

y0
y1
⋮
yn

xα,0

xα,1

⋮
xα,n

a0
a1
⋮
an

⎠
⎟
⎟
⎞

Implementation and Benchmarks

Pedersen hash benchmarks

N.B. all benchmarks were measured on a Surface Pro 6, with an i7-8650U CPU at 2.1GHz, 4
physical cores and 16GB RAM.

Our open source library, barretenberg (https://github.com/AZTECProtocol/barretenberg),
contains an implementation of TurboPLONK over the BN254 curve. This variant
implements Pedersen hashes using our fixed-base scalar multiplication gate.

We benchmarked barretenberg against the current fastest Groth16 prover that also
supports the BN254 curve, Bellman. TurboPLONK is approximately five times faster than
the Groth16 implementation.

When comparing raw constraint counts, TurboPLONK requires 5 times fewer constraints
than an equivalent R1CS-base SNARK

https://github.com/AZTECProtocol/barretenberg

It should be noted that a TurboPLONK constraint requires approximately twice as much
prover 'work' than a Groth16 constraint. 20% of the Groth16 constraints are also bit
decompositions; these binary gates are approximately 4 times as expensive for the prover
in TurboPLONK than Groth16. (Since PLONK doesn't have the property that the scalars in
prover computation are actually equal to the witness.)

Under this model, the TurboPLONK prover should be approximately 2.25 times faster than
Groth16.

New advances in multi-scalar-multiplication over elliptic
curves

The remaining speed advantage between the TurboPLONK prover and the Groth16 prover
can be explained by considering the relative speeds of the two libraries when computing
multi-scalar-multiplications in G1, where the bulk of prover time is spent

Using original techniques for performing this algorithm, Barretenberg can compute over 1
million scalar multiplications in < 1 second on average consumer-grade hardware.

Pippenger's multi-exponentiation algorithm is the fastest known method to compute a
multiple scalar-multiplication over different bases. Our new contribution is the observation
that, when computing multi-products, using the affine point addition formula requires
substantially fewer field multiplications than formulae for projective and jacobian
coordinates.

When evaluating affine point addition, the formula is:

λ = mod p
x − x2 1

y − y2 1

x =3 λ −2 (x +2 x) mod p1

y =3 λ(x −1 x) −3 y mod p1

Computing requires a modular inverse, which is orders of magnitude more expensive

than a field multiplication.

λ

However, the Pippenger multi-products can be arranged to produce sequences of
independent point additions. That is, the outputs of additions in the sequence are not
inputs to any additions in the sequence.

This allows for the use of Montgomery's trick to compute batch modular inverses

∀i ∈ {1,…,n} : d =i a
j=1

∏
i−1

j

s = (d a)n n
−1

∀i ∈ {1,…,n} : e =i s a
j=i+1

∏
n

j

∀i ∈ {1,…,n} : r =i d ei i

Assuming a sufficiently large , the cost of a batched modular inverse is 3 field

multiplications per inverse. This produces a cost of 6 field multiplications to compute a
point addition.

For short Weierstrass curves, the traditional mixed-addition (projective) formula requires 11
field multiplications.

n

