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Abstract

Scalability and interoperability issues have been two of the main reasons preventing the
wide-spread adoption of blockchain systems. Despite significant progress in recent years, solutions
that are simple, efficient, and secure, and that do not restrict functionality remain elusive. In this
paper, we are taking a step forward to address these challenges by introducing Plumo, a framework
that enables secure and efficient light client synchronization and cross-chain transaction validation
via SNARK proofs.

We present a formal framework for Plumo, as well as a concrete instantiation on top of
a BFT consensus network which uses SNARKs to prove changes in the consensus committee.
We suggest optimized building blocks, including SNARK-friendly hash-to-curve functions from
existing cryptographic primitives and SNARK-friendly aggregateable BLS signatures.

Finally, we present an evaluation of our implementation, showing that even resource-
constrained clients (such as low-end mobile phones) can transact efficiently and securely with
our system. We show that the SNARK proof spanning 6 months worth of blockchain validator
updates are quite feasible: proving costs about USD $12 worth of computation on modern cloud
infrastructure, and verification can be done in about 6 seconds on a low-end smart phone.

∗Corresponding author.



1 Introduction

In recent years, there have been significant advancements to address crucial scalability and interop-
erability challenges in the blockchain space. On the scalability side this includes the development of
more efficient consensus protocols to improve latency and throughput [BKM18; KK+16; Yin+19],
sharding to allow for better utilization of available network resources further improving transaction
processing throughput [Al-+18; Cor+13; KK+], and payment channels to reduce the amount
of transaction data that needs to be processed and stored on-chain while also providing better
performance [Gud+; Mal+17]. On the interoperability side improvements include new insights on
atomic cross-chain swaps [EMSM19; Her18], symmetric cryptographic locks [Mal+20; TMSM19],
(custodial) exchange protocols [Ben+19; HLG19], and other asset transfer techniques [KK+; TSB19;
Zam+19]. Despite all of this progress, however, several key challenges still remain understudied.

In terms of scalability, efficient synchronization and verification of a distributed ledger or parts
thereof are still a major hurdle for clients who want to bootstrap or catch up on the latest state,
since they have to spend significant resources in terms of bandwidth and computation. For example,
at the time of writing (January 2020), the Ethereum blockchain (in non-archive mode) has a size of
about 250 GB, including more than 4.5 GB of header metadata1. Such heavy workloads are infeasible
for all but the most resource-rich participants, who are able and willing to run full nodes. This
leaves out a large potential user base, including (light) clients running on mobile phones, and clients
who interact with the network only intermittently. This issue is expected to become even more
severe with the current strive for low-latency, high-throughput chains to provide better usability
which results in significant chain growth in relatively short time periods. First attempts to address
this challenge have been proposed recently but they are arguably too complex and constrained
for wide-spread use [MS18], limited to networks that are based on Proof-of-Work and Nakamoto
consensus [Bün+19b], or require to keep (old) consensus committees active for extended periods of
time to create on-chain forward links [Nik+17] which increases the risk of long-range blockchain
forking attacks of forking the blockchain.

Another motivating use case is cross-chain interoperability [Zam+19], which nowadays are either
limited in their functionality [Int] or rather complex and, e.g., require entire arbiter chains [Cos;
Pol]. In many cases, to cope with failures in cross-chain communication, the verifying chain has to
retrieve and verify all headers of the source chain [Btc; Wze], which is (as argued above) unscalable.

Our contribution. We introduce the Plumo validation framework to enable lightweight trans-
action validation without requiring clients to download and verify the full header chain. The
framework uses succinct non-interactive arguments of knowledge (SNARKs) [Bit+12; Gen+13;
Gro16] to produce short proofs attesting to the validity of large amounts of blockchain data. These
proofs, once published, can be cheaply verified by light clients or in cross-chain transaction validation.

We further present a concrete instantiation of our framework on top of a BFT consensus
network [BKM18; KK+16; Yin+19] and describe our implementation and evaluation results. This
allows even resource-constrained clients, such as low-end mobile phones, to transact efficiently and
safely in modern high-performance blockchain networks, by using the SNARK proofs to verify
changes in the set of authoritative blockchain validators. Besides presenting our optimized SNARK
relations for BFT consensus committee transitions, we make several additional contributions to
further improve efficiency of SNARK processing, including a generic approach to build SNARK-
friendly hash-to-curve functions from established cryptographic primitives and present a concrete

1Calculated as 508 byte headers times the block number 9360646 Statistics from https://etherscan.io/charts.
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instantiation combining Bowe-Hopwood hash [Hop+19] and Blake2Xs [Aum+16] resulting in SNARK-
friendly BLS signing [BGS03; BLS01].

We implemented the BFT-based instantiation of the Plumo validation framework, using the
Groth16 proof system [Gro16] and SCIPR Lab implementation of Zexe [Bow+18], our SNARK-
friendly hash-to-curve function [Hop+19] and BLS signing. We integrated this with the Celo
blockchain. For our experiments we used a Google Cloud n1-ultramem machine2 which is equipped
with 4 Intel ® Xeon ® E7-8880 v4 processors and 3844 GB of DDR4 RAM. On this machine, it takes
about 47 (86) min to create the SNARK proof covering 128 (256) of daily validator changes encoded
in about 67 M (127 M) constraints. This effort is required just once per such multi-month interval,
and the proof can then be verified by anyone. Independently of the number of validator changes,
these proofs have a size of less than 1 kB and can be verified efficiently even on low-end phones such
as the Motorola Moto G (2nd Gen) in about 6 seconds with an unoptimized implementation.

This paper makes the following contributions:

• We introduce the Plumo validation framework for secure and more efficient light client synchro-
nization and cross-chain transaction validation.

• We provide a formal security analysis for our Plumo validation framework, which might be also
of independent interest.

• We describe a generic approach to build SNARK-friendly hash-to-curve functions from established
primitives together with a concrete instantiation designed to improve prover efficiency on large
messages, SNARK-friendly BLS signing instantiation, and our SNARK relations to prove validator
changes.

• We present details of our implementation and evaluation of a concrete instantiation of the Plumo
validation framework showing that its cheap to generate and verify SNARK-based compression
proofs covering months worth of validator changes.

The rest of the paper is organized as follows: We discuss related work in Section 2, give a
system overview in Section 3, introduce preliminaries in Section 4, describe the Plumo validation
framework in Section 5, the protocol instantiation in Section 7, and implementation and evaluation
results in Sections 8 and 9, respectively. We conclude with future work in Section 10.

2 Related Work

Blockchain scalability has attracted a good amount of attention over the past few years, due to the
desirability of and technical difficulties involved in creating a decentralized ledger which is easy to
use. There are two key problems; obtaining good throughput of transactions processed, and ensuring
fast validation time so that nodes transacting using the underlying protocol can be confident that
the state of the ledger they have is correct, without performing an undue amount of computation.

Several approaches have been proposed so far which improve one or both of these two properties.
We note here that we have excluded from discussion approaches which significantly trade off
decentralization in favor of efficiency. Without such a cutoff we would necessarily include here a
history of centralized databases, which is not our focus.

BFT Consensus. One throughput bottleneck in Bitcoin (and similar) blockchains is the need to
broadcast all transaction information to all potential Proof of Work miners. Better scalability is

2
https://cloud.google.com/blog/products/gcp/introducing-ultramem-google-compute-engine-machine-types
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attained by having, at any given time, a small committee of well-resourced validators who are in
charge of agreeing on new blocks, using a Byzantine Fault Tolerance (BFT) consensus protocol [CL99;
BKM18; KK+16; Mon20; Yin+19]. In permissionless blockchains committee members create their
identities via a Sybil-resistant identity creation mechanism such as Proof of Work (PoW) [Nak09;
KK+16] or more commonly Proof of Stake (PoS) [Kia+17] and are elected into the committee
through some randomized voting process [Bon+18; Gal+20; Syt+17]. We will not review the current
state of consensus protocols in this paper, save to note that Plumo’s improvements apply on top of
those offered by committee-based consensus.

Scalability for Proof of Work Chains. PoW chains, while typically lower in throughput, have
so far seen more success in implementing scalability solutions which improve validation time for
clients of the chain. One such project is NiPoPoW, which uses statistical properties of the proof of
work hashes to make probabilistic guarantees about the validity of the chain in logarithmic time
[KLS16]. FlyClient, a subsequent work, takes this concept further by effectively placing block hashes
in a tree structure [Bün+19a]. These approaches, however, do not apply to proof of stake chains
due to the lack of such statistical properties in the cryptographic signing algorithms they leverage.

SNARK-based Scaling. There are already a few approaches that use SNARK-based techniques
to improve scalability of blockchain systems similar to Plumo. Coda [Mec] maintains a succinct
summary of the blockchain state whose correctness is attested to by SNARK proofs, which can
be incrementally updated by recursive composition of SNARKs a la Proof-Carrying Data [Val08;
Bit+13; Ben+14a]. The benefit of this approach is that the latest chain state can always be verified
in a few milliseconds. One downside is efficiency of updates: they always require running the
SNARK prover, and moreover, involve relatively slow elliptic curves. 3 Another downside is that
all blockchain verification logic needs to be implemented as constraint system to be proven by the
SNARK, which is difficult to implement and constrains functionality. Piperine [LNS20] focuses
on reducing costs to prove and verify complex state machine transitions and shows how to use its
SNARK-based scaling techniques for Ethereum.

Layer Two Scaling. Several other approaches for blockchain scalability have been proposed.
In the common parlance of the industry, Layer 1 (L1) solutions are baked into the blockchain’s
consensus rules, while Layer 2 (L2) are built on top of the underlying protocol (e.g., using its
scripting/programmatic features) and so are easier to iterate on. Several L2 solutions have been
proposed which work across both PoW and PoS protocols. Plasma and TrueBit both rely on fraud
proofs, by which actors are normally assumed to be honest but with a mechanism to affect their
punishment through economic disincentives should they show malicious behavior [PB17]. The
approach most similar to ours is ZK Rollup, where every change to the state is accompanied by a
SNARK proof attesting to its validity, created by the block proposer. Optimistic rollup [Glu] is
similar, but each new state is initially assumed to be true with the caveat that fraud proofs can be
submitted to slash the node submitting the new state if it is false.

While some of the above approaches address the tension between the two outcomes of improved
throughput and fast chain validation, they do so by introducing additional complications. Prior
approaches using SNARKs require either verifying a large number of proofs (which is impractical
for low-end devices), or very expensive prover costs (which neessitates new economic incentives, a

3The practical way to do repeated recursive compositions is via a cycle of MNT elliptic curves [Ben+14a]; due to
their low embedding degrees (4 and 6), the base fields of these curves require nearly 800 bits to achieve 128 bits of
security, which slows down both proving and verification. Recent results indicate difficulty of finding more efficient
cycles of curves [CCW18].
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presumption of generosity on the part of the community, or centralization in availability). Approaches
not using SNARKs achieving both properties currently broaden their attack surface by introducing
additional assumptions of economic rationality and the bounded external incentives, which may not
hold in reality.

Plumo thus seems to be the first to achieved high throughput and fast chain validation, without
major new assumptions. Concretely, in the parameter chosen for our implementation, we merely
need someone to generate a SNARK proof every 6 months at a cost of about $12, and without
increasing the protocol’s attack surface beyond standard BFT+PoS and the use of well-studied
SNARK schemes.

3 System Overview

We now describe the ideas and tradeoffs underlying the Plumo system, exemplified by its concrete
application to the Celo blockchain. Our primary goal, here, is light client efficiency : light clients
should be able to securely synchronize to the head of the chain by downloading a small amount of
data and perform a short computation. A related goal is that even after synchronization to the
latest state, processing subsequent blocks should also be efficient.

3.1 System model

We assume a blockchain network where new blocks are chosen by BFT consensus executed by a set
of validators, with some fixed target block time. We assume that at any time there are n validators.
The set of validations can change (e.g., based on Proof-of-Stake elections) at the end of every epoch,
which is some fixed number of blocks. Each validator has a public key signing pki (e.g., registered
together with the proof-of-stake before elections occur), and signs blocks with the corresponding
secret signing key.

We assume that a light client that would like to make efficient queries to the latest state only
has to know the current head of the chain.

3.2 Threat model

We assume that within each epoch, out of the present n validators, more than 2n
3 are honest. The

remaining f validators are assumed to be f malicious (Byzantine), i.e., controlled by a adversary.
They can collude, send invalid messages during consensus, or fail to send messages. Thus, signatures
by a quorum of ≥ 2n

3 validators is needed for a block to be considered valid.
Any validator may be corrupted in subsequent epochs, after it has exited the validators set (i.e.,

during the epoch, validators’ honest behavior is incentivized by slashing of its locked stake, but the
lock is later lifted).

We assume that the adversary is computationally bounded, and that the cryptographic building
blocks are indeed secure by their own definition. Our SNARK scheme relies on a structured reference
string, which we assume is securely generated by a suitable MPC setup ceremony (i.e., that at least
one participant in this MPC behaves honestly and does not leak their random coins).

5



3.3 Designing an ultra light client

We now describe a high-level design of a Plumo client, exemplified by the the Celo use-case, in a
series of didactic steps. The presentation here stresses the high-level intuition; see Section 7 for
further details.

Initial strawman design We could take the approach mentioned in the Bitcoin whitepaper
[Nak09] and follow the Simple Payment Verification approach: download the headers of all the
blocks, and verify that a quorum of ≥ 2n

3 currently approved validators signed each block. Whenever
there is an election, update the currently approved validator set. This approach certainly works,
but is inadequately efficient for light clients: there are too many headers to download, especially
when bock times are short (which is desirable for for low transaction latency and round-trip times).

Epoch-based syncing An improvement is to allow elections only at some block interval, a period
which we call an epoch, e.g. once a day. Since we’re using a BFT-style consensus algorithm, light
clients only need to know the current validator set in order to validate the most recent block.
Therefore, we allow light clients to synchronize only epoch-transition blocks until they reach the
head of the chain. Since the validator set changes only at those blocks, a light client can verify
the evolution of the validator set (and are trusting the validators to validate the content of blocks
within the epoch). Additionally, by following Ethereum state design, it’s enough to know the latest
state root to make efficient light client queries.

Signature aggregation Every block needs to include enough validator signatures (a quorum) to
convince a light client of its validity. Signature aggregation enables replacing all the signatures with
a single signature. We use BLS signatures for signing individual block headers by ≥ 2n

3 validators.
This allows us to use the non-interactive aggregation functionality of BLS signatures, having a single
signature in a block instead of ≥ 2n

3 signatures. To achieve a threshold-like functionality, we use
an n-bit bitmap indicating which of the n validators contributed their signature to the aggregated
multisignature. Since the public keys are known, this suffices for verification.

SNARK proofs for many epochs After introducing epoch-based syncing and signature ag-
gregation, the computation becomes simple enough to be succinctly summarized into a SNARK
proof. The proof attests that the validator set evolved, over some large number of epochs (each
accompanied by suitable signatures by that epoch’s validators set), from a given initial validators
set A to a given final validator set B. Such a SNARK proof can aggregate many epochs transitions
into a single transition from A to B, and is highly succinct: the light client verifying this proof
does not need to see the intermediate blocks, headers or even validator sets. This architecture is
illustrated in Figure 3.1.

Before proceeding to describe the in-depth instantiation, we discuss an abstract Validation
Framework and provide proofs of its security in Section 5.

6



Epoch 1

Validator set 1

BLS

Epoch 2

Validator set 2

BLS

. . . Epoch N

Validator set N

BLS

SNARK proof Validator set NValidator set 1

Figure 3.1: Plumo architecture overview

4 Preliminaries

4.1 Notation

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]
n
i=1 as a short-hand for the vector

(a1, . . . , an), and [ai]
n
i=1 = [[ai,j ]

m
j=1]ni=1 as a short-hand for the vector (a1,1, . . . , a1,m, . . . , an,1, . . . , an,m);

|a| denotes the number of entries in a. We analogously define {ai}n1 with respect to sets instead of

vectors. If x is a binary string then |x| denotes its bit length. For a finite set S, let x
$←− S denote

that x is an element sampled uniformly at random from S.

NP Relations. We write {(x;w) : p(x,w)} to describe a NP relation R ⊆ {0, 1}∗ × {0, 1}∗
between instances x and witnesses w decided by the polynomial-time predicate p(·, ·).
Security notions. We denote by λ ∈ N a security parameter. When we state that n ∈ N for some
variable n, we implicitly assume that n = poly(λ). We denote by negl(λ) an unspecified function
that is negligible in λ (namely, a function that vanishes faster than the inverse of any polynomial in
λ). When a function can be expressed in the form 1− negl(λ), we say that it is overwhelming in λ.
When we say that algorithm A is an efficient we mean that A is a family {Aλ}λ∈N of non-uniform
polynomial-size circuits. If the algorithm consists of multiple circuit families A1, . . . ,An, then we
write A = (A1, . . . ,An).

4.2 Bilinear groups

The cryptographic primitives that we construct in this paper rely on cryptographic assumptions
about bilinear groups. We formalize these via a bilinear group sampler, which is an efficient
algorithm SampleGrp that given a security parameter λ (represented in unary), outputs a tuple
〈group〉 = (G1,G2,GT , q, G1, G2, e) where G1,G2,GT are groups with order divisible by the prime
q ∈ N, G1 generates G1, G2 generates G2, and e : G1×G2 → GT is a (non-degenerate) bilinear map.

Generally, we distinguish between three types of bilinear group samplers [GPS08]: Type I groups
have G1 = G2 and are known as symmetric bilinear groups. Types II and III are asymmetric
bilinear groups, where G1 6= G2. Type II groups have an efficiently computable homomorphism
ψ : G2 → G1, while Type III groups do not have an efficiently computable homomorphism in either
direction. Certain assumptions are provably false w.r.t. certain group types (e.g., SXDH only holds
for Type III groups), and in general in this work we assume we are working with working with a
Type III groups.
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4.3 Chains of elliptic curves

Let E be an elliptic curve over a finite field Fq, where q is a prime. We denote this by E/Fq, and we
denote by E(Fq) the group of points of E over Fq, with order n = #E(Fq). We say that an elliptic
curve E/Fq is pairing-friendly if E(Fq) has a large prime-order subgroup, and if the embedding
degree (i.e., the smallest integer k such that n divides qk−1) is small.

Definition 4.1 (Two-chain of elliptic curves). A two-chain of elliptic curves is a pair of distinct
elliptic curves E1/Fq1 , E2/Fq2, where q1, q2 are prime, such that #E1(Fq1) = q2.

We say an elliptic curve is ordinary if E[q] ≡ Z/qZ, where [q] is the multiplication-by-p map.

Definition 4.2 (Pairing-friendly two-chain). A (k1, k2)-chain is a two-chain of distinct ordinary
elliptic curves E1/Fq1 , E2/Fq2 with respective embedding degrees k1, k2. A (k1, k2)-chain is pairing-
friendly if k1 and k2 are small.

4.4 Aggregate multisignatures

Our definitions of an aggregate multisignature scheme follow [BDN18]. The only significant difference
between our definitions stems from the fact we assume that a multisignature can be produced
from a set of signatures offline by an untrusted party without secrets. Thus, instead of Sign taking
a list of public keys in order to produce a multisignature, the multisignature functionality has
been separated out into the MultiSign algorithm. An aggregate multisignature scheme consists of
a 8-tuple of efficient algorithms (Setup,KeyGen, Sign,KeyAgg,MultiSign,Verify,AggSign,VerifyAgg)
that behave as follows:

• Setup(1λ)→ pp : a public-coin setup algorithm that, given a security paramater λ (represented
in unary), outputs a set of public system parameters pp.

• KeyGen(pp)
$−→ (pk, sk) : a key generation algorithm that, given public parameters pp, outputs a

public-secret key pair (pk, sk).
• Sign(pp, sk,m) → σ : a signing algorithm that, given a secret key sk and message m ∈ {0, 1}∗,

returns a signature σ.
• KeyAgg(pp, {pki}ni=1)→ apk : an offline key aggregation algorithm that, given a set of n public

keys {pki}ni=1, returns an aggregate public key apk.
• MultiSign(pp, [σi]

n
i=1)→ σ : an offline multisignature algorithm that, given n signatures [σi]

n
i=1,

returns a multisignature σ.
• Verify(pp, apk,m, σ)→ 0/1 : a verification algorithm that, given aggregate public key apk, message
m ∈ {0, 1}∗, and multisignature σ, returns 1 or 0 to indicate the multisignature is valid or invalid,
respectively.

• AggSign(pp, {(apki,mi, σi)}ni=1)→ Σ : an offline signature aggregation algorithm that, given a set
of n (aggregate public key, message, multisignature)-triplets {(apki,mi, σi)}ni=1, outputs aggregate
multisignature Σ.

• VerifyAgg(pp, {(apki,mi)}ni=1,Σ) → 0/1 : an aggregate multisignature verification algorithm
that, given a set of n (aggregate public key, message)-pairs {(apki,mi)}ni=1 and an aggregate
multisignature Σ, returns 1 or 0 to indicate the signature is valid or invalid, respectively.

We require that an aggregate multisignature scheme (Setup,KeyGen,Sign,KeyAgg,MultiSign,Verify,
AggSign,VerifyAgg) satisfies completeness and unforgeability, as defined in 4.3.

8



Definition 4.3 (Perfect completeness). The aggregate multisignature scheme (Setup,KeyGen,Sign,
KeyAgg,MultiSign,Verify,AggSign,VerifyAgg) has perfect completeness if for all pp← Setup(1λ) and
{{((ski,j , pki,j),mi)}ni

j=1}ni=1, where (ski,j , pki,j)← KeyGen(pp) and the mi are distinct, it holds that

Pr [VerifyAgg(pp, {(apki,mi)}ni=1,AggSign(pp, {(apki,mi, σi)}ni=1)) = 1] = 1 ,

where for all i ∈ [n]

(apki, σi)←
(
KeyAgg(pp, {pki,j}

ni
j=1),MultiSign(pp, [Sign(pp, ski,j ,mi)]

ni
j=1)

)
.

We note that an aggregate multisignature scheme with perfect completeness implies both a multisig-
nature scheme and a signature scheme with perfect completeness.

Next, we define an unforgeable aggregate multisignature scheme. Informally, in the unforgeability
game an adversary is given a challenge public key and signing oracle access to the corresponding
secret key. Their goal is to output a valid aggregate multisignature for a set of (aggregate public
key, message)-pairs, where one of the aggregate public keys can be formed by running KeyAgg on a
set of public keys that includes the challenge key, and the corresponding message was not previously
queried.

Definition 4.4 (Computationally unforgeable aggregate multisignature). For an aggregate multisig-
nature scheme (Setup,KeyGen,Sign,KeyAgg,MultiSign,Verify,AggSign,VerifyAgg) we define the ad-

vantage of an adversary against unforgeability to be defined by AdvforgeA (1λ) = Pr
[
GameforgeA (1λ) = 1

]
where the game GameforgeA is defined as follows.

GameforgeA (1λ)

pp← Setup(1λ)

(pk∗, sk∗)
$←− KeyGen(pp)

Q← ∅
({(apki,mi)}n−1i=1 ,Σ, {pki}ti=1,mn)← ASign(pp, pk∗)
apkn ← KeyAgg(pp, {pki}ti=1 ∪ pk∗)
If mn 6∈ Q ∧ VerifyAgg(pp, {(apki,mi)}ni=1,Σ) :

Return 1
Else return 0

Sign(m)

σ ← Sign(pp, sk∗,m)
Q← Q ∪ {m}
Return σ

We say an aggregate multisignature scheme is computationally unforgeable if for all efficient adver-
saries A it holds that AdvforgeA (1λ) ≤ negl(λ).

Note that an unforgeable aggregate multisignature scheme implies both an unforgeable multisignature
scheme and an unforgeable signature scheme as in the definitions given presented in [BDN18].

4.5 O-SNARKs: SNARKs in the presence of oracles

In this section we introduce the notion of an O-SNARK [FN16], which is a SNARK that allows for
knowledge extraction in the presence of oracles. Our interface and definitions present a simplification
of theirs by removing consideration of auxillary inputs and some relaxing some performance
requirements including on Prove and Setup.
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Definition 4.5. A succinct non-interactive argument of knowledge for a relation R and an oracle
family O is a triple of efficient algorithms Π = (Setup,Prove,Verify) such that:

• Setup(1λ) → crs: on input of a security parameter λ (expressed in unary), outputs a common
reference string crs.

• Prove(crs,x,w)→ π: given a common reference string crs, an instance x, and a witness w such
that (x,w) ∈ R, this algorithm produces a proof π.

• Verify(crs,x, π)→ {0, 1}: on input of a common reference string crs, an instance x, and a proof
π, the verifier algorithm outputs 0 (reject) or 1 (accept).

Additionally, Π should satisfy the properties of perfect completeness, succinctness, and adaptive
argument of knowledge for a oracle family O specified as follows:

• Completeness: For every (x,w) ∈ R it holds that:

Pr

[
Verify(crs,x, π) = 1

∣∣∣∣ crs← Setup(1λ)
(x, π)← Prove(crs,x,w)

]
= 1 .

• Succinctness: For every crs← Setup(1λ) and (x,w) ∈ R it holds that:

– |π| = poly(λ), where π ← Prove(crs,x,w) (i.e., proof size is defined by a universal polynomial
in the security parameter λ), and

– Verify runs in time poly(λ+ |x|).
• Adaptive argument of knowledge for oracle family O: Π satisfies adaptive argument of knowledge

with respect to an oracle family O if for a randomly sampled CRS crs ← Setup(1λ) and oracle
O ← O and every efficient oracle adversary AO who makes Q queries recorded in query transcript
qt = {(qi,Oq)}Qi=1, there exists an efficient extractor EA given full access to the state of A including
any random coins such that:

Pr

 Verify(crs,x, π) = 1
∧

(x,w) /∈ R

∣∣∣∣∣∣∣∣
crs← Setup(1λ)

O ← O
(x, π)← AO(crs)
w← EA(crs, qt)

 ≤ negl(λ) .

The following theorem is a modification of [FN16, Theorem 6].

Theorem 4.6. Let O be a random oracle family. If Π is a SNARK, then Π is an O-SNARK for O.

We justify our modification as follows. Though we omit auxillary inputs from our definition of an
O-SNARK, we observe that the original theorem then implies that only every Un-auxillary input
SNARK, where Un is the uniform distribution over strings of length n, is a “no-auxillary input”
O-SNARK for every random oracle family. We remark that Un is considered a “benign” distribution,
as discussed in [BP15; Bit+16], and that extraction is always possible in the presence of auxillary
inputs sampled from benign distributions. Therefore, every SNARK is a Un-auxillary input SNARK
and our modified theorem holds.
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4.6 Consensus

Byzantine fault tolerance (BFT) refers to the ability of a computing system to endure arbitrary
(i.e., Byzantine) failures of its components while taking actions critical to the system’s operation.
In this setting we are concerned with the challenge of state machine replication where a group of
n state machine replicas (validators) tries to solve the problem of deciding on a growing log of
command requests (transactions) by clients. This can be achieved by running a Byzantine fault
tolerant consensus mechanism. In this work we focus in particular on committee-based versions,
such as as PBFT [CL99] and its derivatives [BKM18; KK+16; Mon20; Yin+19], which assume that
n > 3f where f denotes the number of Byzantine replicas, i.e., those nodes under the control of an
adversary. BFT consensus protocols provide the following guarantees [CGR11]:

• Termination: Every correct replica eventually decides some value v.

• Validity: If all replicas propose the same value v, then no replica decides a value different from
v; otherwise, a correct replica may only decide a value that was proposed by some correct replica
or the special value ⊥ indicating that no valid decision was found.

• Integrity: No correct replica decides twice.

• Agreement: No two correct replicas decide differently.

Every round of a PBFT-like algorithm has three phases: prepare, pre-commit, and commit. In
the prepare phase, the current leader of the consensus committee proposes the next record that the
system should agree upon. On receiving this prepare message, every replica validates the correctness
of the proposal and broadcasts a pre-commit message to the group. The nodes wait until they collect
a quorum of (n − f) pre-commit messages and publish this observation with a commit message.
Finally, replicas wait for a quorum of (n− f) commit messages to make sure that enough of their
peers have recorded the decision.

PBFT-like protocols rely upon a correct and live leader to start each round and only proceed if
a two-thirds quorum exists. To ensure liveness in case a leader is faulty, PBFT has a view-change
protocol. All nodes therefore monitor the leader’s actions and initiate a view-change if they detect
either Byzantine behavior or a lack of progress. Each node independently announces its desire to
change leaders and stops validating the leader’s actions. If a quorum of (n − f) replicas decides
that the current leader is faulty, then the next leader in a well-known schedule takes over.

5 Ultralight clients

In this section, we introduce a methodology for constructing ultralight clients for blockchains. We
start by presenting a formalization of blockchain protocols as defined by their consensus algorithms.
The main task of the ultralight client protocol designer is to define a “summary function” that,
given a valid blockchain, extracts a constant-size “state” that alone is sufficient not only for checking
whether new blocks are valid, but for updating itself. That is there should exist a “summary update
function” that, given some state s corresponding to a blockchain b, can determine if block(s) u are
a valid extension of b, and if so update s to the s′ the summary function would output given b‖u.

Often, just by having to satisfy the properties above, the state will contain enough information
to permit the client access to blockchain-specific functionalities such as the ability make transactions,
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check account balances, etc.. Sometimes, additional information will need to be added to the state
in order to facilitate certain blockchain interactions. We leave it to individual system designers
define extensions to what we consider a minimal set of requirements for ultralight clients.

Ultimately, the ultralight client receives SNARKs proving knowledge of some new valid blocks
(the witness) that result in a new state. The summary update function enables the prover to create
incremental update proofs in time only quasi-linear in the new blocks. This is necessary because
as a blockchain grows very large it becomes the case that CPU and memory requirements become
insurmountable obstacles to proving the summary function, which runs in quasi-linear time in
the entire blockchain. The use of SNARKs ensures that the ultralight client receives a succinct
update proof it can verify in constant-time, and the knowledge-soundess property ensures the prover
actually knows of valid update blocks that extend the previous blockchain resulting in the new
claimed state. Starting with a trusted initial state (e.g., computed from the genesis block), the
ultralight client can receive a series of incremenetal state update proofs and if they all accept we
are guaranteed the existence of an extractor who can output a full blockchain corresponding to the
final state of the ultralight client.

We proceed to present a formalization of this methodology. First, in Section 5.1 we describe
the functions an ultralight client designer needs to define, and place some requirements on those
functions. We also provide some discussion of techniques and tradeoffs for designing these functions
we believe ultralight client designers will find helpful. Then, in Section 5.2 present a compiler that,
given these functions and a SNARK, outputs a secure ultralight client that preserves the original
consensus guarantees (i.e., an extractor can always extract a valid blockchain corresponding to any
state an ultralight client is convinced to accept). Last, we define these functions for Plumo and
apply our compiler to obtain a secure ultralight client.

5.1 Functional components of an ultralight client

Consensus Language. The consensus algorithms of a blockchain define a consensus language LC
parameterized by some consensus parameters cp, which might include descriptions of hash functions,
difficulty, curve parameters, etc.. If (cp, b) ∈ LC , then we say b is a valid blockchain with respect to
consensus parameters cp for the consensus language LC . For conciseness, we often write b ∈ LC to
mean (cp, b) ∈ LC .

We require that a total order be defined on the set LC (i.e., for every b, b′ ∈ LC either b < b′,
b > b′, or b = b). Further, we require that the relation ≤ be efficiently computable. Most often, a
total ordering of valid blockchains is defined by their length in blocks.

Summary Function. The purpose of an ultralight client is to reduce the storage, bandwidth,
and computation requirements on a device, while still providing security guarantees with respect
to an important subset of the interactions with a distributed ledger (e.g., the ability to make and
receive transactions). The goal of an ultralight client system designer is to identify a constant-sized
state that is sufficient, potentially together with additional prover help, to efficiently carry out these
functionalities. We formalize this by means of an efficient summary function S : LC → LS that,
given a valid blockchain b outputs a state s in the NP state language LS . This also gives the NP
state relation RS defined as

RS = {(s; b) : s = S(b) ∧ b ∈ LC} .

When given b 6∈ LC , the summary function S must always output ⊥.
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We place to requirements on this state. First, given two states s, s′ ∈ LS , an ultralight client
must be able to efficiently decide which state is the canonical version, which no additional input. A
total order on states is required that corresponds exactly to the total order on the corresponding
blockchains (i.e., s ≤ s′ implies b ≤ b′). For most practical systems this is easily satisfied by having
the summary function output the latest block number as part of the state.

Incremental Proving. A natural way to prove s ∈ LS is to use a SNARK to prove knowledge of
b such that (s, b) ∈ RS . As noted, this becomes impractical as b grows very large. To remediate
this problem, we observe that for practical systems of interest4 it is possible to define the summary
function such that the state it produces is enough not only to check the validity of an update u (i.e.,
a set of blocks that is a supposed extension of some chain), but to compute the state corresponding
to S(b‖u) if so. We formalize this by means of a requiring an efficient update advice function U and
an efficient summary update function Ŝ : LS × Codomain(U)→ LS such that :
• for all (s, b) ∈ RS and updates u ∈ {0, 1}∗ we have that Ŝ(s, πu) = S(b‖u) given update advice
πu ← U(s, u), and

• for every efficient adversary A there exists an efficient extractor E such that if A, given uniformly
sampled consensus parameters cp, outputs (b, πu) such that Ŝ(S(b), πu) = s′ 6=⊥, then E , given
full access to the state of A including any random coins, outputs u such that S(b‖u) = s′.

So instead of receiving a SNARK proving knowledge of b‖u such that S(b‖u) = s′, an ultralight
starts with an initial trusted state s0 ∈ LS (with corresponding witness b0 ∈ LC) and then receives
a SNARK proving knowledge of πu such that Ŝ(s, πu) = s1. That is, the SNARK is run to prove
the relation

RŜ =
{(
s ∈ LS , s′ ∈ {0, 1}∗; πu ∈ Codomain(U)

)
: Ŝ(s, πu) = s′

}
.

The client may subsequently receive another SNARK updating the state from s1 to s2, and so on.
Since knowledge-soundness composes, the knowledge-soundness requirements on the SNARK and
on Ŝ guarantee that for accepting proofs we can extract [ui]

n
i=1 such that S(b0‖u1‖ . . . ‖ui) = si for

i ∈ [n]. In this way we’re able to guarantee the security and efficiency of the ultralight client state
update protocol, while facilitating the incremental update proofs necessitated by large blockchains.

The reason we have defined Ŝ to operate on πu instead of u directly, is that the U function
allows to us first apply specialized AoKs to the authenticated data in u. For example, in Plumo
U takes the multisignatures out of each block in u and in their place appends a single aggregate
multisignature (later we show how the security game for aggregate multisignatures can be re-cast as
an AoK). Computing an aggregate multisignature is extremely cheap, but allows us shrink the Ŝ
circuit nearly in half since verifying an aggregate multisignature on n messages requires computing
half the pairings verifying n multisignatures does.

Generally speaking, there are many specialized AoKs with strictly linear time provers (with
small constants), whereas SNARK provers run in quasi-linear time and require a costly reduction to
R1CS. Ultralight client designers should seek to maximize use of highly prover-efficient AoKs in U ,
and subsequently verify those AoKs in Ŝ.

As a last remark on the design of these functions, we observe some of the most efficient
cryptography is pairing-based, including pretty much all the most efficient SNARKs. If a given
blockchain uses pairing-based cryptography to authenticate data, then at minimum a two-chain

4Observe that systems in which, having previously verified b ∈ LC , it is not possible to verify b‖u ∈ LC (and
update the state) given some state s = S(b) in time independent of |b|, are not “practical” in the sense that at a
certain point the ledger grows long enough that most nodes lack the computational power to verify new blocks.
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is required so that the pairing based authenticated data on the inner curve can be proven in the
SNARK run on the outer curve. Two-chains have a very significant advantage over cycles in that
they allow most cryptography in the system to be done over the normal size inner curve. For
ultralight client designers that wish to produce incremental update proofs for much larger chunks of
pairing-based authenticated data than we do in Plumo, but want to preserve the advantages of
using a two-chain, we recommend looking to a recent work that introduces a specialized—linear-time
prover (with small constants), log-time verifier, and log-size proof—argument for all pairing-based
languages [Bün+19c] whose inputs and proofs lie in the same curve.

Preserving consensus soundness in the presence of oracles. We want to show that the
ultralight protocol as we have thus far described preserves the consensus guarantees (i.e., it is always
possible to extract a valid blockchain for any accepting update proof). Consensus guarantees are
generally formulated with respect to some cryptographic trapdoor functions. For example, without
the corresponding secret key an efficient adversary cannot spend Bitcoin sent to a given public key.
In our security definition, we give our adversary access to various oracles—signing, proving, etc.. It
is indeed up to ultralight client system designer to enumerate them for their consensus algorithms.

We require that for any efficient adversary that can produce a SNARK updating an ul-
tralight client’s state, there exist an efficient extractor that, given given the query transcript
qt = {(qi,O(qi))}Qi=1 of the adverary’s oracle queries and responses and full access to its state
including any random coins, outputs u such that S(b‖u) = s. Unfortunately, we run into problems
with the standard proof of knowledge definition for SNARKs when we introduce such oracles into
the mix. This problem has been first and foremost studied by Fiore and Nitulescu, who developed
the notion of an O-SNARK and produced the first results regarding their existence [FN16].

Our compiler theorem requires that (U, Ŝ) is an adaptive argument of knowledge for O and
additionally ΠOS is an O-SNARK for O. Since knowledge-soundness composes when the oracle
provers are given access to oracles from the same oracle family, this ensures we are able to extract
the witness u even when it includes authenticated data. We reiterate is necessarily the task of the
ultralight client designer both to define O according to their blockchain protocol and to prove that
both (U, Ŝ) and the SNARK they choose are adaptive arguments of knowledge for O.

5.2 An ultralight client compiler

Construction 1. Given a consensus language LC with summary function S, update advice function
U , summary update function Ŝ, and SNARK ΠOS = (Setup′,Prove′,Verify′) we can construct a
minimal ultralight client defined by a triple of efficient algorithms ΠUC = (Setup,Prove,Verify) that
work as follows:

• Setup(1λ)→ crs: given a security parameter λ (in unary), outputs the common reference string
crs← Setup′(1λ).

• Prove(crs, s, u) → (s′, π): the prover, given a common reference string crs, state s ∈ LS, and
update u, first runs U(s, u) to obtain πu. Next, they run Ŝ(s, πu) to obtain s′. Finally, the prover
runs Prove′(crs, (s, s′), πu) for the relation RŜ to obtain π. The prover outputs (s′, π).

• Verify(crs, s, s′, π) → {0, 1}: the verifier, given state s ∈ LS, claimed subsequent state s′, and
proof π, outputs 1 if s′ > s and Verify′(crs, s, s′, π) = 1; else it outputs 0.

We next defines what it means for an ultralight client to be an adaptively secure.
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Definition 5.1 (Adaptively secure ultralight client). An ultralight client is adaptively secure with
respect to an oracle family O if for a randomly sampled CRS crs← Setup(1λ) and oracle O ← O
and every efficient oracle adversary AO who makes Q queries recorded in query transcript qt =
{(qi,Oq)}Qi=1, there exists an efficient extractor EA given full access to the state of A including any
random coins such that:

Pr

 Verify(crs, S(b), s′, π) = 1
∧

S(b‖u) 6= s′

∣∣∣∣∣∣∣∣
crs← Setup(1λ)

O ← O
(b, s′, π)← AO(crs)

u← EA(crs, qt)

 ≤ negl(λ) .

We prove the following theorem demonstrating that Construction 1 defines an adapatively secure
ultralight client under certain assumptions about it’s functional components.

Theorem 5.2. If (U, Ŝ) is an adaptive argument of knowledge for O and ΠOS is an O-SNARK
for O, the ultralight client ΠUC output by Construction 1 is adaptively secure (Definition 5.1) with
respect to O.

Proof. For every efficient adversary A that with non-negligible probability produces an output such
that the Verify algorithm of ΠUC accepts in the context of the adaptive security game, we define an
extractor EA as follows.

We begin by using A to build an adversary B against the O-SNARK ΠOS for oracle family O
and relation RS . On input crs and given oracle access to O, the adversary B runs AO(crs) to obtain
(b, s′, π) (i.e., B passes through A’s queries and responses to its own oracle) and then computes
s← S(b). Adversary B then outputs (s, s′, π). By definition, any time the ΠUC verifier accepts given
(crs, s, s′, π), the ΠOS verifier does. So B makes the O-SNARK verifier accept with non-negligible
probability. By the assumption that ΠOS is an O-SNARK for O, there must exist an extractor
EB, that on input crs and qt, outputs πu such that Ŝ(s, πu) = s′ with overwhelming probability
whenever B gets the O-SNARK verifier to accept.

Next, we use B and EB to build an adversary C against (U, Ŝ). Adversary C, on input consensus
parameters cp and oracle O, samples crs← Setup(1λ) and runs BO(crs) to obtain (s, s′, π). Adversary
C also records both the blockchain b that A outputs when run by B and also records the query
transcript qt. C then runs EB(crs, qt) to obtain πu, and finally outputs (b, πu). Since B gets the
O-SNARK verifier to accept with non-negligible probability and when this happens EB outputs
πu such that Ŝ(s(b), πu) = s′ 6=⊥ (where we know s′ is not equal to ⊥ because otherwise the ΠUC

verifier would not have accepted), then C gets Ŝ to accept with non-negligible probability. By the
assumption (U, Ŝ) is an adaptive argument of knowledge for O, there exists an extractor EC that
outputs u such that S(b‖u) = s′ 6=⊥ with overwhelming probability whenever C gets Ŝ to output
s′ 6=⊥.

On input crs, qt extractor EA runs extractor EC(qt) to obtain u, which it outputs. Since EC
succeeds with overwhelming probability when A succeeds, we conclude that the ultralight client
ΠUC is adpatively secure with respect to O.

5.3 Plumo: an ultralight client

The following is a slight simplification of how these component functions are defined in Plumo. We
describe the exact protocol in further depth in subsequent sections.
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The summary function S looks at the latest epoch message mn from a chain of valid epoch
messages (m0‖ . . . ‖mn) = b ∈ LC and returns the epoch message number corresponding to mn and
the set of public keys signed in mn.

The update advice function U takes a set of public keys s and a chain of epoch messages
u = (m1, . . . ,m`), strips out the multisignatures from each epoch message and then appends the
aggregrate multisignature Σ← AggSign(pp, {(apki,mi, σi)}`i=1). We prove the adaptive security of
Plumo holds for any aggregrate multisignature scheme, so for now we don’t worry about specifics.

The summary update function Ŝ takes a state s consisting of an epoch message number a and a
set of public keys, and update advice πu consisting of one or more epoch messages and an aggregate
multisignature over them. If πu contains a valid chain of epoch messages under the aggregate
multisignature Σ, and the first epoch message in u has epoch message number a+1 and an aggregate
public key apk composed of the keys of (2/3 + 1)-majority of the public keys in s, then Ŝ outputs
the public keys and epoch message number number of the last epoch message in u; else Ŝ outputs ⊥.

The oracle family O reflects how the aggregate multisignature scheme used by the validators is
the crucial trapdoor function used by O. So sampling O ← O is defined by running KeyGen(pp) to
obtain a secret key sk stored by the O, which on input a message m outputs σ ← Sign(pp, sk,m).

We use the following informally stated result from [FN16], together with the observation that
the aggregate multisignature security game can be re-cast as an adaptive proof of knowledge with
respect to O, in order claim that Plumo is adaptively secure for O, given any SNARK Π and any
aggregrate multisignature scheme that’s set in the hash-and-sign paradigm. The hash-and-sign
paradigm is characterized by first hashing a message with a hash modeled as a random oracle, and
then using the secret key to operate on that hash to produce the signature.

Theorem 5.3 (Informal). Let O be an oracle family defined by a computationally unforgeable
signature scheme set in the hash-and-sign paradigm, where the hash function is modeled as a random
oracle. Then all SNARKs are O-SNARKs for O.

6 Building blocks design

We now describe some of the design choices we’ve made in order to create a SNARK-friendly
protocol. This is a set of techniques we’ve utilized in our concrete protocol instantiation described
in 7.

Choosing a multisignature scheme. Multisignature schemes allow multiple parties to produce
a single “multisignature” for a message m, attesting to the fact they each individually signed m.
They were a natural design choice for our desiderata, allowing us to separate verification time and
signature size from committee size.

While multisignatures for spans of epochs can be proved in a SNARK, when sending or checking
for a transaction a client downloads the latest block header and verifies its multisignature directly.
We use the BLS multisignature scheme [BLS01; BGS03; RY07] for both epoch messages and
block headers, but instantiate the hash-to-curve function differently in the two settings, picking an
optimized version for both outside and inside a SNARK.5

BLS multisignatures have small signature and public key size (a single group element each) and
fast verification (two pairings). However, perhaps the most important property of BLS for Celo

5It is also possible to aggregate BLS multisignatures for multiple messages [BGS03]. Aggregate multisignatures are
never consumed directly by any nodes on the network, but are used in our SNARK circuit to reduce prover time.
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is that it supports offline aggregation of signatures into multisignatures. Indeed, virtually every
efficient multisignature scheme requires multiple rounds of interaction [Dri+19], or in the case of
the LOSSW multisignature scheme [Lu+13] interaction is not required, but each signer must know
the final set of signers in advance.

For Celo’s initial committee size of 100, with the right network incentives in place, it may happen
that multisignatures are correctly computed on “first try” the vast majority of the time. However,
Celo has a planned consensus algorithm upgrade in mind, BFTree,6 that would greatly increase the
number of validators. Not only does the increase in committee size exacerbate the failure potential
here, but the BFTree protocol in its current form indeed relies on offline aggregation of signatures
into multisignatures.

Challenges of using BLS. There are two primary complications that come with our use of
BLS signatures. First, they are set in bilinear groups and so we must use a pairing-friendly curve.
While pairing-friendly curves are less efficient at the same security level as their non-pairing-friendly
counterparts, BLS signing, multisignature aggregation, and verification are still very fast. The real
problem follows from the fact that the BLS verification equation cannot be efficiently proven in a
SNARK over the same curve because of the mismatch between the field size and prime subgroup
order.7 While the same can be said for multisignatures schemes in the single group setting, the
difference is that is very easy to find efficient cycles of curves used to resolve this problem when
they need not all be pairing-friendly. Contrarily, known cycles of pairing-friendly curves are very
inefficient, and indeed there is some evidence suggesting more efficient pairing-friendly cycles may
not exist [CCW19].

Second, the security of BLS signatures holds in the random oracle model.8 While certainly
there are valid theoretical concerns about the random oracle model [CGH04], a more pertinent
problem is that the “symmetric-flavor” cryptographic hash functions generally believed (i.e., for
protocols of practical interest) capable of securely instantiating random oracles using Fiat-Shamir
transformation [FS86] are very costly to prove inside SNARKs.

A SNARK-friendly, composite algebraic-symmetric hash. First, we address the need to
instantiate the random oracle in BLS and the apparent lack of SNARK-efficient options.9 Our
solution to this problem is a composite algebraic-symmetric hash function that first uses BHPedersen,
a SNARK-optimized variant [Hop+19] of the collision-resistant Pedersen hash [Ped92], to shrink
the input to a single group element, and then calls Blake2Xs10 [Aum+16] on that group element.
By calling Blake2Xs on a much smaller input, less iterations of its internal compression function are
required, which greatly increases prover efficiency. We show that if Blake2Xs is safe to instantiate a
random oracle with, then our composite hash function is also safe to instantiate a random oracle
with under the discrete-logarithm assumption.

A two-chain of pairing-friendly curves. As mentioned, BLS is positioned in the bilinear group

6See https://medium.com/celohq/bftree-scaling-hotstuff-to-millions-of-validators-7d6930ee046a.
7The inefficient way to do this would be to run a circuit generator such as [Ben+14b] on a representation of the

verification program. Proving the resulting circuit would be much less efficient than using a pre-processing zkSNARK
in second curve, which doesn’t use complex data-dependent control flows or memory accesses like that output by the
circuit generator would [Ben+14a].

8To our knowledge LOSSW is the only efficient multisignature scheme that is secure in the plain model [Dri+19].
9Recently introduced “algebraic-flavor” hash functions such as MiMC [Alb+16b] and Poseidon [Gra+19a] are very

efficient to prove inside SNARKs and are suggested to be safe to instantiate a random oracle with. However, they
have not yet received much cryptanalysis and we believe it ill-advised to deploy them until such time.

10We actually use a slight variant of Blake2Xs that saves us an additional compression function iteration.
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setting. This means to efficiently prove the correctness of a batch of signatures we need a second
pairing-friendly curve with a prime order subgroup equal to the size of the base field of the first.
While there exist cycles of pairing-friendly curves where the base field of each curve is equal to the
prime order subgroup of the previous forming a closed loop, and thus allowing polynomial-depth
recursive composition of proofs, they are quite inefficient at reasonable security levels.

The most efficient known cycle at the 128-bit security level is a two-cycle of MNT curves each
defined over a 753 bit field11, currently deployed in the Coda protocol [Mec]. The large size of
these curves is less important for the SNARK prover that runs intermittently on a powerful server,
and more impactful for the validators who must constantly make signatures over this large curve.
Especially in terms of supporting signing on CPU and memory-constrained devices such as hardware
wallets, these large curves presented a number of practical hurdles to an implementation that could
keep up with our target block production time of 5 seconds.

We resolved this problem by opting for a recently discovered “two-chain” of curves from [Bow+18].
While this pair of pairing-friendly curves only allows for a single level of recursion, the first curve is
377 bits, and has performance on-par with other pairing-friendly curves at the 128-bit level, allowing
for reasonable performance on hardware wallets.

The second curve is 782 bits. We split epoch periods up into fixed-size chunks to prove—so a
bootstrapping client might get a first SNARK proving 256 days, a second proving 32 days, and a third
proving 8 days to get them up to speed 296 days after the network launch. While polynomial-depth
recursion would keep this at a constant single SNARK, modern SNARKs are so small and fast to
verify that having to verify a few was still acceptable even for our most limited clients.

Splitting the relation. In the BLS verification equation the only computational work besides
checking a pairing equation is computing a hash-to-curve function (the random oracle) on the
message. Following cues from Zexe, we first opted to compute the entire composite hash function
on the messages in a SNARK over the inner EBLS curve, and then prove it’s correct verification
over the larger, outer ECP curve in addition to proving correctness of the pairing equation.

Surprisingly, this turned out to be computationally more expensive overall for our prover. We
settled on implementing the Groth16 proof system [Gro16] because it’s a better-studied SNARK
with a verification equation requiring just 3 pairings, plus a linear number of exponentiations in the
size of the instance. Surprisingly, It turns out that doing the hashing in ECP instead of splitting the
relation in this way is actually cheaper than the added cost of these exponentiations given the large
size of epoch messages.

A known trick to reduce verifier time in Groth16 is to hash the instance down to a single
field element, and modify the circuit to prove that the original computation is being performed
on an opening of that hash of the correct form. The verifier then receives the original instance,
hashes it themselves, and uses that hash to compute the single exponentiation needed to verify the
SNARK. The problem with this method in our case is that the verifier is actually another SNARK
prover, and again we run into the problem that hashing inside SNARKs is expensive. While only
collision-resistance is needed here, using the more SNARK-friendly BHPedersen isn’t feasible because
it’s not efficiently possible to use the same CRS of group elements in both curves.12

Ultimately, we found it most efficient BHPedersen over each message individually in ECP and

11See https://github.com/CodaProtocol/coda/blob/d57c4cc6935318541497dc6cbe0cedbfdd343c95/docs/

specs/signatures/description.md.
12We actually implement BHPedersen over “embedded” Edwards curves EEd/BLS and EEd/CP over EBLS and ECP,

respectively, where as noted in [Hop+19] a very prover-efficient circuit representation is permitted.
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to run Blake2Xs over those messages in EBLS. The result of hashing each epoch message with
BHPedersen over ECP is interpreted as a string that we pack tightly into field elements over EBLS.
This way we still do the more expensive part of the composite hash over the faster curve, but on a
much smaller input, minimizing the cost of checking the proof over the inner curve in the outer
curve.

Final tweaks for a Plumo client. Finally, we describe a few last techniques for minimizing
client verification time and data costs. We first observe that the client only needs to know the start
and end epoch messages the SNARK is proving there exists a valid chain between. Using the trick
described above, we hash these two messages individually using Blake2Xs and pack the 512-bit total
result into a two field element instance, minimizing the amount of exponentiation needed. The
client, having already confirmed the chain up to epoch a, receives a 392 byte Groth16 proof over
ECP covering epoch a to b, the 95 byte instance, and the 4, 750 byte epoch message13 for epoch b.
They hash epoch messages and confirm they match the instance and then verify the Groth16 proof.

As our SNARK circuits cover epoch chains of fixed powers two, it may require verifying multiple
to get a client up to speed. Note that a client needs only check the initial epoch hash of the first
SNARK instance and the final epoch hash of the final SNARK. For the intermediate hashes the
client only makes sure that the line up such that the second instance element of the first SNARK is
the same as the first instance element of the second SNARK and so on.

In all, a bootstrapping client needs only download the current epoch message (the genesis
committee public keys being hardcoded) and a few SNARKs, which they batch verify.14 The result
is a Plumo sync protocol which is extremely data and computation efficient.

7 Protocol Instantiation

Our construction is tailored for Celo’s use-case which is a BFT-based chain. In the proof-of-stake
protocol, epochs are about a day long (17280 blocks, each block targets 5 seconds), where at
the last block of each epoch the validator set is updated. Our instantiation achieves light client
synchronization efficiency, but also aims for efficiency for after the synchronization process. As
long as they’re continuously connected, they have to download and process subsequent blocks.
This motivates being conservative with the size and performance of our signatures, while targeting
high-security.

The epoch messages, which define the validator set changes, contain the full set of public keys to be
used by validators. Being a long message, this motivates designing a SNARK-friendly hash-to-curve
function. While SNARK-friendly hash functions such as MiMC [Alb+16a], Poseidon [Gra+19b] and
Rescue [Aly+19] have been introduced in the last years, we chose to remain with more conservative
choices based on established primitives, and using optimized versions of our chosen of primitives.

We discuss an instantiation of the BLS signature scheme that allows efficient verification inside
SNARKs. To do so we need to have a mechanism to express relations involving pairing equations
efficiently. We achieve this by using a SNARK-friendly hash-to-curve function and a pair of elliptic

13It is generally not necessary to even send the full epoch message. Validators may stay on consecutive committees
as decided by the proof-of-stake mechanism such that bitmask and only the new public keys are sufficient to send in
order for the client to reconstruct the epoch message.

14We use a few different well-known batching techniques including a variant of the small exponent test [BGR98; CL06]
to reduce 3n pairings to n + 2, computing multi-exponentiations [Pip80], and computing a single final exponentiation
after computing all Miller loops.
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curves where BLS signatures are defined on the first and relations involving BLS signatures are
expressed on the second. In addition, for SNARK proofs to be efficiently computable, we require
that the base field of the BLS curve has high 2-adicity. For example, this makes the curve BLS12-381,
that is currently being standardized in the IETF, unsuitable for our protocol [Bon+].

We make sure that the chosen solution allows the SNARK circuit to aggregate public keys by
elliptic-curve point additions only, to achieve the best efficiency.

To avoid rogue key attacks, we sign a user-dependent string using a different domain in our hash
function in order to create a proof-of-possession. As mentioned in [RY07], any string could work, as
long as its known to the registration authority.

7.1 A SNARK-friendly Composite Hash-to-Curve Function

We use the try-and-increment method - we initialize a counter to 0 and prefix it to the message. If
we fail at any of the steps described below, we increment the counter and try again.

BHPedersenHash: CRH. This collision-resistant hash had been introduced in [Hop+19] as a
SNARK-friendly variant of a Pedersen hash. The hash uses a twisted Edwards curve having the
same base field as the BLS curve. and benefits from the birational equivalence to a Montgomery
curve to achieve greater efficiency

In this variant, the input message m is divided into segments si, which are furthermore divided
into 3-bit chunks ci. The maximum number of chunks in a segment depends on the curve, and a
formula to derive it is given in [Hop+19]. We denote it Cmax.

We can formally describe its functionalities as follows:

BHPedersenHash

• CRH.Setup(1λ, s)→ ppCRH

1. Sample a group (G, q)← SampleGroup(1λ).

2. For i ∈ {1, ..., s} Sample a segment generator gi ← G.

3. Output ppCRH := (G, q, {gi}si=1).

• CRH.Eval(ppCRH,m ∈ {0, 1}n)→ h

1. Parse ppCRH as (G, q, {gi}si=1).

2. Divide the message into segments mi of size Cmax.

3. For each message segment mi, divide the message into 3-bit chunks mi,j . Furthermore,
use the birational equivalence with a Montgomery curve on the generator gi to obtain hi.

4. For each chunk mi,j = (s0, s1, s2), perform (1 + s0 + 2s1)(1− 2s2) · 24ihi and sum them up
into fi.

5. After processing each segment, use the birational equivalence on fi to obtain the equivalent
Edwards point ei. Sum all of these up into e.

6. Output the x-coordinate of e.

BHPedersenHash is shown to be collision-resistant in [Hop+19]. It follows from the DLR
assumption introduced in [Bün+18].
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Blake2Xs: XOF. This cryptographic hash function is described in [Aum+16]. It uses at its base
Blake2s through repeated hashing to obtain a digest of a desired size, making it an extensible-
output function. In some instantiations, it’s possible to optimize the hash even further by using a
slight variant of Blake2Xs, where we do not perform the inner hash and instead use the output of
BHPedersenHash. This is true when the base field of BHPedersenHash has size smaller than 512 bits.
The XOF must output at least the amount of bits that can represent an element of the appropriate
group, and an extra bit. This would be the modulus size of G1 if signatures are in G1 plus one. The
extra bit is to determine the sign of y.

Point derivation. Following deriving enough random bits to attempt determining a point, we
parse the bits (without the last one) as a possible x coordinate. We then provide a matching y
coordinate such that (x, y) is a valid curve point point. We use the last bit to efficiently check this
is the correct y, by performing point compression and checking equality.

Cofactor multiplication. The last part is getting rid of low order components by multiplying
by the cofactor. When signatures are in G1, we do it by directly multiplying by the cofactor. In
G2, we’ve found it’s more efficient to use the method from [BP17], where we multiply by a whole
multiple of the cofactor.

7.2 SNARK-friendly BLS Signatures

One efficient instantiation that targets 128-bit security without compromising on efficiency is one
that uses the curves from [Bow+18]. We describe it below.

A pairing-friendly two-chain We use a pairing-friendly two-chain introduced in [Bow+18], ECP

and EBLS. This two-chain a few properties that are advantegous to our protocol.
First, EBLS (BLS12-377) is a curve from the BLS12 family, defined over a 377-bit prime, providing

an approximate 128-bit security. This makes the curve appropriate for BLS signatures, even if the
protocol wouldn’t use SNARKs. ECP is a curve built using the Cocks-Pinch method, having the
base field prime of EBLS as a factor in its group order. Second, since both ECP and EBLS have high
2-adicity, 46 and 47 respectively, allowing to efficiently prove large relations, as measured by amount
of R1CS constraints. This is advantegous for our case, since we can use larger relations that span
more epochs. Additionally, since proofs are generated only once in a while, different kinds of parties
can generate these proofs. Parties with access to powerful hardware can generate these proofs faster.

Public keys and signatures Public keys are in G1 and signatures are in G2, chosen so as to
minimize public key size.

To deal with rogue public key attacks, we note that in our case, the registration authority is
an Ethereum smart contract. In the Celo blockchain, validators are associated with an Ethereum
address, through which they register and to which they receive rewards. Since we wish to associate
the BLS public key with the Ethereum address, we use the Ethereum address as the string in the
proof-of-possession.

Hash to curve We use EEd/CP for BHPedersenHash, and use the variant of the XOF that doesn’t
perform inner hashing. This works since BLS12-377 has a base field of size 377 bits.
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Other instantiations Our BLS signature construction works in any case it’s possible to express
relations involving pairing equations. Another example is [MS18], which uses a cycle of MNT
curves of size about 753 bits, or a possible variant of Halo [BGH19] where one of the curves is
pairing-friendly. In that case, the XOF variant that does use inner hashing is needed.

7.3 Plumo Client Sync Relation

We now present our relation for Plumo. We present two variants - one that is defined only in an ECP

SNARK and one that offloads some of the computation to a EBLS SNARK. We use the Groth16
proof system for both SNARKs.

Let AMS = (Setup,KeyGen, Sign,KeyAgg,MultiSign,Verify,AggSign,VerifyAgg) be an aggregate
multisignature scheme with key space K and signature space S. Let v be the number of validators
per-epoch and ` the number of epochs. Upon receiving an instance x = ([pki,0]vi=1, [pki,`]

v
i=1, apk`, a)

and a proof π for the relation below, a client first confirms it know a chain of valid epoch messages
up to epoch a, and that at epoch a the current set of validator public keys are [pki,0]

v
i=1. If this is

true, the client checks that KS-SNARK.Verify() = 1. For more details, the relation is shown in 7.4.
Offloading Blake2Xs computations to an inner proof is formally described by splitting the relation,

such that the inputs to the inner proof are hashes of epochs obtained by running BHPedersenHash
to obtain hi and the outputs from the inner proof are the outputs of Blake2Xs on each hi. G1 and
G2 below refer to the two source groups of BLS12-377. Let η ∈ Zm be a nonce. For more details,
the split relation is shown in 7.4.

We note that although some of our primitives target 128-bit security, the final protocol will have
less, due to Cheon’s attack and its effect on big trusted setups, as noted in [Chi+19] and [GGW20],
and NFS attacks, as noted in [BD19]. For a setup of around 180 epochs and our general use of EBLS

and ECP, we estimate the security would be between 114-bit and 120-bit.

7.4 Concrete relations

We first describe the non-split relation in 7.1.

Figure 7.1: Non-split relation
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)
∧ apkj = KeyAgg(pp, {pki,j}i∈[v],bi,j=1) for j ∈ {0, 1, . . . , `− 1}
∧ apk` = KeyAgg(pp, [pki,`]
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∧ HammingWeight(b1,jb2,j · · · bv,j) >
⌈
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
To describe the split relation, we start from an expanded description description of the non-split

relation and move on to describe the split relation. We describe that in 7.2. over ECP.
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Figure 7.2: Split relation
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Splitting the relation, we can prove
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8 Implementation

We’ve implemented our protocol using the Zexe set of libraries. While we do not use the DPC
framework, we utilize both the native and circuit implementations of many cryptographic primitives,
including the EBLS implementation allowing for in-circuit SNARK verification, BLS signature
verification and incomplete point additions and exponentiations. The code is available at [GS19].
Additionally, the code to perform setup for SNARKs on ECP and EBLS curves is available at [Kon20].

8.1 Techniques for circuit efficiency

As our circuit aims to compress a large history of the chain into a succinct proof, we paid special
care for a circuit-efficient implementation of our cryptographic primitives. We describe below some
of the techniques we’ve used.

Epoch encoding We utilize a circuit-friendly epoch encoding, which is a binary representation
of the data needed for the light client protocol. This epoch encoding is signed by validators
independently of the rest of the data during consensus, in order to both put the exact data that
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the circuit needs (i.e., removing parts that the circuit doesn’t need and adding auxiliary data that
makes the circuit work easier) and to use our efficient composite hash construction. Specifically,
the data encoded for each epoch includes the epoch number, the compressed public keys of the
new validator set, the aggregated public key of the new validator set and the threshold of required
signatures.

Point compression Point compression in G1 and G2 is done by encoding the y coordinate into
a single bit. We take the common approach of using the bit to choose whether to take the bigger of
the possible two y options. In the circuit case, we check the equivalent condition of y ≤ p−1

2 in G1

and y0 ≤ p−1
2 ∨ (y0 == p−1

2 ∧ y1 ≤
p−1
2 ) in G2, which is more efficient to implement, as it compares

against constants.

Hash to group The epoch encoding is hashed into group in order to be signed. To hash into the
group G1, where each element in defined by (x, y) ∈ F2

p, we first have to hash into the field Fp. We
compress the message using the collision-resistant BHPedersenHash and prepend a counter. On the
short resulting string we use Blake2Xs with an XOF digest length that is large enough to be parsed
as an Fp element, truncating bits to match the field element size and try parsing. If it fails, we try
again. We continue by trying to parse the field element as a possible x value. We attempt to find a
matching y and if we succeed, we multiply by the G1 cofactor to zero out low-order elements.

We’ve chosen to use this try-and-increment method rather than other existing constant time
methods because of its efficiency inside a circuit. Other methods require hashing in any case, and
add more operations afterwards. In our case, we provide the first counter that results in a hash
that parses as a successful x coordinate as a witness. The security of this relies on the fact that a
threshold of honest validators would follow the try-and-increment process and only sign the message
with the correct counter. Other methods, such as those described in [FH+], might be preferable to
protect against implementation mistakes and DoS attacks.

Bitmap and public key aggregation The set of indices of the validators that participated in
a signature is represented a set of bits of the same size as the validator set. We then utilize the
bitmap in multiple ways: we sum the bits and compare that against the epoch threshold to check
that enough validators signed, and we use it as the weights when aggregating the public keys to
obtain the correct aggregated public key that would verify the signature.

We work with non-complete addition formulas, requiring that none of the addends are the
neutral point or equal to each other. The validator set is of fixed size, and therefore it might have
”holes” in it, where the entry is a neutral element. To ensure that aggregating the public keys
does not result in the neutral element, we start the aggregation with the generator of the group as
the first addend. This means that the generator is no longer considered a valid public key in our
protocol.

Edwards/Montgomery birational equivalence The BHPedersen is defined over the EEd/CP

curve, which is a twisted Edwards curve, and therefore it has complete addition formulas. The
addition formulas cost 6 constraints per addition on the Edwards form. As done in [Hop+19],
we use the birationally equivalent Montgomery form of the curve in a way that guarantees the
incomplete addition formulas are enough, where these cost 3 constraints each. We additionally select
appropriate parameters for the number of windows and chunks to guarantee collision resistance.
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Aggregated BLS signature The epoch messages that we sign are distinct - at the very least, the
epoch index makes them so. When verifying BLS signatures on distinct messages, it’s possible to do
it at the cost of n+ 1 pairings rather than the individual computation which would take 2n pairings,
as mentioned in [BDN18]. This is done by computing an aggregate signature σ̃ =

∑n
i=1 σi and

verifying (using the aggregated public keys apki): e(σ̃, G2) = e(H(m1), apk1) · · · e(H(mn), apkn).
In our case, we provide the aggregated signature σ̃ as a witness, and as is commonly done we defer

the final exponentiation until the end. Specifically, we calculate FinalExponentiation(MillerLoop(σ̃,−G2)·
MillerLoop(H(m1), apk1) · · ·MillerLoop(H(mn), apkn)) and check whether it’s equal to 1 in GT .

First and last epoch output The light client would eventually need to verify that the SNARK
proof showed the evolution of the chain from the epoch that is input to the epoch that is output.
That means that the light client needs access to this data. Directly outputting it as public SNARK
inputs would result in multiple group exponentiations, which are costly. To cope with that, we
hash using Blake2s both the input and output epochs, individually. We hash them individually to
account for the case where multiple SNARK proofs are needed to synchronize the light client to the
latest state. In this case, we do not need to know the pre-image of the intermediate epoch hashes,
and just make sure that they line up.

8.2 Main circuit

We present a procedural description of our main circuit that implements our split relation in ECP.
The second circuit, defined on EBLS, computes the second step of our composite hashes using
Blake2Xs on each of the inputs and matches it with another corresponding input.

Main circuit

We first define the following helper method:

• EncodeEpochToBits(i, t, apk, {pk}ni=1) :

1. Encode i, the epoch index, as a 16-bit integer.

2. Encode t, the required signer threshold, as a 32-bit integer.

3. Encode apk, the aggregated public key of this validator set, as a compressed G2 point
using the method from 8.1.

4. Encode each public key in {pk}ni=1 as a G2 compressed point using the method from 8.1.

Then we describe the main circuit:

• MainCircuit(σagg, πhash, {bmj}Nj=1, {ij , tj , apkj , {pkj,k}nk=1}Nj=1):

1. Encode the input epoch into e0 using EncodeEpochToBits, hash using Blake2s and save
into h1. Use the input epoch key set {pk}ni=1 as the next key set. Additionally

2. Initialize bh hashes := [], xof hashes := [], v := 1 ∈ GT .

3. For each epoch ei, j = 1...n perform:

(a) Use the current key set {pk}ni=1 to build an aggregated public key apk using the
bitmap bmj .
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(b) Encode the epoch ej using EncodeEpochToBits and hash it using BHPedersenHash, the
first part of our composite hash. Accumulate into bh hashes. Additionally, compute
the second part of our composite hashes which uses Blake2Xs and accumulate into
xof hashes. Then complete the hash into group and denote it as H(ej).

(c) Compute m := MillerLoop(H(ej), apk) and accumulate v = v ·m.

(d) Save {pkj,k}nk=1 as the current key set.

4. Tightly pack bh hashes and xof hashes as elements of the scalar field of EBLS, and
use VerifyGroth16 with πhash to verify that each element in bh hashes hashes into the
corresponding element in xof hashes when using Blake2Xs.

5. Verify the aggregated BLS signature FinalExponentiation(MillerLoop(σagg,−G2) · v) == 1.

9 Evaluation

We benchmarked our split relation implementation on a Google Cloud machine with 4 Intel ®
Xeon ® E7-8880 v4 processors and 3844 GB of DDR4 RAM. This kind of machine costs about $6
an hour when run in a preemptible mode and $25 an hour when run normally. For our use-case, this
is attractive as proofs for a large span of epochs can be generated efficiently on such a machine, see
Figures 9.1, 9.2 and 9.3. We report on the number of constraints for different epoch and consensus
committee configurations in Table 1. Since the epoch length is about a day, proof generation
machines can be turned off most of the time and be powered up only when there are sufficient
epochs to generate a proof. Additionally, once a proof is created and gossiped through the network,
everyone can verify it and start using it immediately, without the need for generating their own
version of the proof. Summarizing the results, it is possible create proofs that span half a year
worth of epochs for 100 validators in about 2 hours. We evaluated the performance of our verifier
on a Motorola Moto G (2nd Gen), a 2014 mobile phone with 1GB RAM and a Quad-core 1.2 GHz
Cortex-A7 processor. We used an unoptimized implementation, directly cross-compiled from [GS19].
The results show it is possible to verify such a proof in about 6 seconds.

In practice, we are going to deploy the non-split relation, since it simplifies the setup process
to one setup for the ECP curve SNARK, and the overhead is not big enough to justify the extra
complexity.
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Figure 9.1: Proving time on ECP

Figure 9.2: Proving time on EBLS

Figure 9.3: Peak memory consumption for proof generation
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10 validators 100 validators

Epochs EBLS ECP EBLS ECP

1 44 722 882 845 44 722 7 258 711
2 89 190 944 285 89 190 7 684 723
4 178 126 1 067 165 178 126 8 536 747
8 355 998 1 312 925 355 998 10 240 795

16 711 742 1 804 445 711 742 13 648 891
32 1 423 230 2 787 485 1 423 230 20 465 083
64 2 846 460 4 753 568 2 846 460 34 097 470

128 5 692 920 8 685 734 5 692 920 61 362 244
256 11 385 586 16 550 063 11 385 586 115 891 789
512 22 770 918 32 278 721 22 770 918 224 950 879

1024 45 541 582 63 736 037 45 541 582 443 069 059

Table 1: Number of constraints for SNARK proofs

10 Future work

We’ve chosen to use the two-chain ECP and EBLS because of their unique suitability to our parameters
- EBLS is of appropriate size to achieve approximate 128−bit security, while ECP allows proving
statements that include pairings on EBLS. We use the Groth16 proof system. This approach has
some downsides:

• ECP is quite large and slow for the prover. The verifier also incurs some costs, which would be
better with a smaller curve and a more efficient pairing.

• We must build the proof is one go over all the epochs - we can’t incrementally add epochs to an
existing proof.

• We must perform a trusted setup whenever the circuits change, which given our large circuits
adds some operational overhead.

Future work could include using a recursive proof system of reasonable size, and ideally one
without a trusted setup. This includes exploring how Fractal [COS19] and Halo [BGH19] could be
used to iteratively prove statements as new epochs come into existence. Other possibilities that
don’t include recursion could be using a universal proof system, such as PLONK [GWC19] or Marlin
[Chi+19], or even transparent ones such as [BFS19], [BS+18] or [KPV]. All of these come with
trade-offs on prover complexity, proof size or verifier work.

An additional limitation is that our circuit is quite large, given the use of expensive hash
functions and pairings. It might be possible to optimize this using hash functions that are designed
to be circuit-friendly, such as MiMC [Alb+16a], Poseidon [Gra+19b] or Rescue [Aly+19]. These
hash functions are gaining traction and their security is even being evaluated in hash challenges that
pay bounties for finding collisions such as [Sta19] and [FL19]. An additional optimization could be
done by using a recently published argument to reduce the cost of verifying the result of products
of pairings [BMV].
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