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1 Scope

Commit-and-Prove Zero-Knowledge Proof systems (CP-ZKPs) [Kil89, CLOS02] are a generalization
of zero-knowledge proofs in which the prover proves statements about values that are committed.

The aim of this document is to propose and start a discussion on the formalization of CP-ZKPs.
As we detail in the next section, the motivation for using CP-ZKPs is both theoretical and practical.

Following the ongoing standardization effort in the context of ZKPs [GKV+18], our goal here is
to address terminology and definitions for the notions of commitments and CP-ZKPs. In particular,
we believe that the starting point will be discussing a community standard for the definition of
commitment schemes. In spite of being mentioned in [BCM+18], a more extended discussion on
terminology, syntax and definitions of commitments is currently lacking. A second step that, we
believe, is worth discussing is the notion of commit-and-prove ZKPs: several different notions are
used in the literature, and it would be important to agree on agree on a single definition definition
or outlining a taxonomy of the existing variants.

2 Motivation

As observed in the ZKProof proceedings (Applications Track) [BCM+18], most applications of Zero
Knowledge Proofs require the use of some commitment scheme in order to ensure the privacy and
confidentiality of the users and their data, by proving knowledge of the opening. The use of the
commit-and-prove paradigm has several interesting features:

– If the commitment is compressing, one can distribute succinct and private representations of
data that significantly reduce communication complexity and input size for verifiers (as well as
their running time).

– One can publish commitments to data previous to generating proofs about them. For example,
the Identity scheme in [BCM+18] requires that some issuer publishes a credential for the user,
which will later be used to prove some attribute; in some cases even before the statement to
be proven for a specific attribute is established. This means that, ideally, we would like to have
some flexibility as to what statements are proven on the opening of the commitment, as well as
to which ZKP schemes are used for the different statements.

– One can use commitments to make different proof systems interoperable. For example, one can
prove two different statements about the same commitment using two distinct ZKP systems.
This can be advantageous in order to exploit the different efficiency tradeoffs of existing systems
(see e.g., [AGM18, CFQ19]), or simply because the public parameters of the ZKP systems are
generated in different points in time or by different organizations.



We find thus motivating to have a framework for properly building such applications and instan-
tiating the commitment schemes with the corresponding ZKP schemes. We believe that the starting
point of such a framework should be a formal definition of commitments and commit-and-prove
zero-knowledge proof systems.

Finally, we believe that standardizing the definition for CP-ZKP (and, at a later time, its
framework) offers yet one more advantage related to how we can program constraint systems. Today
there are several high-level languages that can be used to express constraints. In our experience, and
analogously to other programming languages, it would seem beneficial to have pre-defined types for
constraint system variables. These types would be common among most or all applications. The
current proposal could lead to defining the variable type commitment and opening, which could
lead to better security assurances and engineering practices.

3 Background

The commit-and-prove approach in zero-knowledge proofs dates back to the works of Kilian [Kil89]
and Canetti et al. [CLOS02], and has been used extensively, implicitly or explicitly, in plenty of
works.

As we detail in Section 4.4, the notion of CP-ZKPs could be seen as a specialization of ZKPs by
considering languages that are parametrized by the commitment key, e.g., using informal notation,

Lck = {cx : cx opens to x and x ∈ L}

When focusing on non-interactive zero-knowledge proof systems (NIZK), in which one generates a
language-dependent CRS, there is a variety of CP-ZKP notions used in the literature, such as those
where the commitment key is generated together with the CRS, e.g., [CFH+15], and those where the
commitment key is taken as an input in the NIZK CRS generation [Lip16, EG14, CFQ19], which in
turn include systems where the commitment key is the CRS itself (in which case the commitment
must admit a trapdoor, e.g., [EG14, Lip16]).

Given the theoretical and practical relevance of the commit-and-prove approach, we believe it is
important for the community to either agree on one or at least provide a taxonomy of the variants.

4 Definitions

In this section we give definitions for commitments, zero-knowledge proofs and commit-and-prove
zero-knowledge proofs. We focus on the non-interactive setting although these definitions can be
adapted to the interactive setting.

The definitions of CP-ZKPs proposed in this document are based on the ones recently used in
[CFQ19]. We do not necessarily mean this to be the definition but rather to serve as a starting
point for a related discussion.

Notation. We use λ ∈ N to denote the security parameter, and 1λ to denote its unary repre-
sentation. Throughout the paper we assume that all the algorithms of the cryptographic schemes
take as input 1λ, and thus we omit it from the list of inputs. For a distribution D, we denote by
x ← D the fact that x is being sampled according to D. We remind the reader that an ensemble
X = {Xλ}λ∈N is a family of probability distributions over a family of domains D = {Dλ}λ∈N. We
say two ensembles D = {Dλ}λ∈N and D′ = {D′

λ}λ∈N are statistically indistinguishable (denoted by
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D ≈s D′) if 1
2

∑
x |Dλ(x) − D′

λ(x)| < negl(λ). If A = {Aλ} is a (possibly non-uniform) family of
circuits and D = {Dλ}λ∈N is an ensemble, then we denote by A(D) the ensemble of the outputs of
Aλ(x) when x← Dλ. We say two ensembles D = {Dλ}λ∈N and D′ = {D′

λ}λ∈N are computationally
indistinguishable (denoted by D ≈c D′) if for every non-uniform polynomial time distinguisher
A we have A(D) ≈s A(D′). We denote by [n] the set of integers {1, . . . , n} and by [: n] the set
{0, 1, . . . , n− 1}. We use (uj)j∈[`] to denote the tuple of elements (u1, . . . , u`).

4.1 Relations

Let {Rλ}λ∈N be a family of polynomial-time decidable relations R on pairs (x,w) where x ∈ Dx
is called the statement or input, and w ∈ Dw the witness. We write R(x,w) = 1 to denote that
R holds on (x,w), else we write R(x,w) = 0. When discussing schemes that prove statements
on committed values we assume that Dw can be split in two subdomains Du × Dω. Finally we
sometimes use an even finer grained specification of Du assuming we can split it over ` arbitrary
domains (D1 × · · · × D`) for some arity `. In our security definitions we assume relations to be
generated by a relation generator RG(1λ) that, on input the security parameter 1λ, outputs R
together with some side information, an auxiliary input auxR, that is given to the adversary. We
define RGλ as the set of all relations that can be returned by RG(1λ).

4.2 NIZKs

We recall the definition of non-interactive zero-knowledge arguments of knowledge (NIZK, for short).

Definition 4.1 (NIZK). A NIZK for {Rλ}λ∈N is a tuple of three algorithms Π = (KeyGen,Prove,
VerProof) that work as follows and satisfy the notions of completeness, knowledge soundness and
zero-knowledge defined below

– KeyGen(R) → (ek, vk) takes the security parameter λ and a relation R ∈ Rλ, and outputs a
common reference string consisting of an evaluation and a verification key.

– Prove(ek, x, w) → π takes an evaluation key for a relation R, a statement x, and a witness w
such that R(x,w) holds, and returns a proof π.

– VerProof(vk, x, π) → b takes a verification key, a statement x, and either accepts (b = 1) or
rejects (b = 0) the proof π.

Completeness. For any λ ∈ N, R ∈ Rλ and (x,w) such that R(x,w), it holds Pr[(ek, vk) ←
KeyGen(R), π ← Prove(ek, x, w) : VerProof(vk, x, π) = 1] = 1.

Knowledge Soundness. Π has knowledge soundness for RG and auxiliary input distribution
Z, denoted KSND(RG,Z) for brevity, if for every (non-uniform) efficient adversary A there exists
a (non-uniform) efficient extractor E such that Pr[GameKSNDRG,Z,A,E = 1] = negl. We say that Π is
knowledge sound if there exists benign RG and Z such that Π is KSND(RG,Z).
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GameKSNDRG,Z,A,E → b

(R, auxR)←RG(1λ)

crs := (ek, vk)← KeyGen(R)

auxZ ← Z(R, auxR, crs)(
x, π

)
← A(R, crs, auxR, auxZ)

w ← E(R, crs, auxR, auxZ)

b← VerProof(vk, x, π) = 1 ∧R(x,w) = 0

Composable Zero-Knowledge. A scheme Π satisfies composable zero-knowledge for a relation
generator RG if there exists a simulator S = (Skg,Sprv) such that both following conditions hold for
all adversaries A:

Keys Indistinguishability

Pr

(R, auxR)← RG(1λ);

crs← KeyGen(R)

A(crs, auxR) = 1

 ≈ Pr

(R, auxR)← RG(1λ);

(crs, tdk)← Skg(R)

A(crs, auxR) = 1



Proof Indistinguishability For all (x,w) such that R(x,w) = 1,

Pr


(R, auxR)← RG(1λ);

(crs, tdk)← Skg(R);

π ← Prove(ek, x, w)

A(crs, auxR, π) = 1

 ≈ Pr


(R, auxR)← RG(1λ);

(crs, tdk)← Skg(R);

π ← Sprv(crs, tdk, x)

A(crs, auxR, π) = 1


Remark 4.1 (On auxiliary inputs). In the notion of knowledge soundness defined above we consider
two kinds of auxiliary inputs, auxR generated together with the relation by RG, and auxZ that is
generated from some distribution Z that may depend on the common reference string that in turns
depends on R. Notice that although this notion is implied by a notion where auxiliary inputs can
be arbitrary, our aim is a precise formalization of auxiliary inputs; this is useful to justify why
certain auxiliary inputs should be considered benign, as required to avoid known impossibility
results [BCPR14, BP15]. Finally, we also note that our notion is also implied by SNARKs that
admit black-box extractors (as may be the case for those relying on random oracles [Mic00]).

Remark 4.2 (On definition of zkSNARKs). One can define zero-knowledge succinct non-interactive
arguments (zkSNARKs) as NIZKs enjoying an additional property, succinctness, i.e. if the running
time of VerProof is poly(λ+ |x|+ log |w|) and the proof size is poly(λ+ log |w|).

Remark 4.3 (On notions of knowledge-soundness). Above we use a non black-box definition of
extractability. Although this is virtually necessary in the case of zkSNARKs, NIZKs can also satisfy
stronger notions of (knowledge) soundness.
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4.3 Commitment Schemes

We recall the notion of non-interactive commitment schemes.

Definition 4.2. A commitment scheme is a tuple of algorithms Com = (Setup,Commit,VerCommit)
that work as follows and satisfy the notions of correctness, binding and hiding defined below.

– Setup(1λ)→ ck takes the security parameter and outputs a commitment key ck. This key includes
descriptions of the input space D, commitment space C and opening space O.

– Commit(ck, u)→ (c, o) takes the commitment key ck and a value u ∈ D, and outputs a commit-
ment c and an opening o.

– VerCommit(ck, c, u, o) → b takes as input a commitment c, a value u and an opening o, and
accepts (b = 1) or rejects (b = 0).

A commitment scheme Com = (Setup,Commit,VerCommit) must satisfy the following proper-
ties:

Correctness. For all λ ∈ N and any input u ∈ D we have:

Pr

[
ck← Setup(1λ)

(c, o)← Commit(ck, u)
: VerCommit(ck, c, u, o) = 1

]
= 1

Binding. For every polynomial-time adversary A

Pr

ck← Setup(1λ)

(c, u, o, u′, o′)← A(ck)
:

VerCommit(ck, c, u′, o′)

∧ VerCommit(ck, c, u, o)

∧ u 6= u′

 = negl

Hiding. For ck← Setup(1λ) and every values u, u′ ∈ D, the following two distributions are statis-
tically close: Commit(ck, u) ≈ Commit(ck, u′).

Remark 4.4. In literature there exists more than one syntax for commitment schemes. For example,
some definitions replace the predicate VerCommit above with a procedure that, given a commitment
c and some opening information o, outputs the committed value x (or ⊥ when appropriate).

4.4 Definition of Commit-and-Prove NIZKs

In a nutshell, a commit-and-prove NIZK (CP-NIZK) is a NIZK that can prove knowledge of (x,w)
such that R(x,w) holds with respect to a witness w = (u, ω) such that u opens a commitment
cu. Our formal definitions below essentially add some syntactic sugar to this idea in order to
explicitly handle relations in which the input domain Du is more fine grained and splits over
` subdomains. We call these subdomains commitment slots following [CFQ19]. Intuitively, each
item in the commitment slot represents an input (or a vector of inputs) to the relation which the
prover has previously committed to. We assume that the description of the splitting is part of R’s
description.
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Definition 4.3 (CP-NIZK). Let {Rλ}λ∈N be a family of relations R over Dx × Du × Dω such
that Du splits over ` arbitrary domains (D1 × · · · × D`) for some arity parameter ` ≥ 1. Let
Com = (Setup,Commit,VerCommit) be a commitment scheme (as per Definition 4.2) whose input
space D is such that Di ⊂ D for all i ∈ [`].

A commit and prove NIZK for Com and {Rλ}λ∈N is a NIZK for a family of relations {RCom
λ }λ∈N

such that:

– every R ∈ RCom is represented by a pair (ck, R) where ck ∈ Setup(1λ) and R ∈ Rλ;

– R is over pairs (x,w) where the statement is x := (x, (cj)j∈[`]) ∈ Dx × C`, the witness is w :=

((uj)j∈[`], (oj)j∈[`], ω) ∈ D1 × · · · × D` ×O` ×Dω, and the relation R holds iff∧
j∈[`]

VerCommit(ck, cj , uj , oj) = 1 ∧R(x, (uj)j∈[`], ω) = 1

Furthermore, when we say that CP is knowledge-sound for a relation generator RG and auxiliary
input generator Z (denoted KSND(RG,Z), for short) we mean it is a knowledge-sound NIZK for
the relation generator RGCom(1λ) that runs ck← Setup(1λ) and (R, auxR)← RG(1λ), and returns
((ck, R), auxR).

We denote a CP-NIZK as a tuple of algorithms CP = (KeyGen,Prove,VerProof). For ease of
exposition, an explicit syntax for CP’s algorithms is as follows.

– KeyGen(ck, R)→ crs := (ek, vk)

– Prove(ek, x, (cj)j∈[`], (uj)j∈[`], (oj)j∈[`], ω)→ π

– VerProof(vk, x, (cj)j∈[`], π)→ b ∈ {0, 1}

Remark 4.5 (Comparing with existing definitions). To define the Geppetto scheme [CFH+15] the
authors define a notion of commit-and-prove SNARKs. Here we highlight the main differences
between their definition and ours. First, our commitment key can be generated without fixing a
priori a relation (or a set of relations , e.g., a multi-QAP). Second, in the model of [CFH+15] one
needs to commit to data using a commitment key corresponding to a specific portion of the input
(in their lingo a “bank”), whereas in our model one can just commit to a vector of data, and only
at proving time one assigns that data to a specific input slot. Third, in our notion the commitment
scheme does not need to be a trapdoor commitment. Our notion is closer to the one given by
Lipmaa [Lip16] (with the exception that again we do not need commitments to be trapdoor), and
is in fact a specialization of the SNARK notion when considering specific families of relations that
include verifying openings of commitments.
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A Other Flavors of Commit-and-Prove NIZKs

In this section we describe a variant of NIZKs (proposed in [CFQ19]) that lies in between stan-
dard NIZKs and CP-NIZKs. We call these schemes NIZKs with commit-carrying proofs (or commit-
carrying NIZKs, cc-NIZKs for short). In a nutshell, a cc-NIZK is like a NIZK in which the proof
contains a commitment to the portion u of the witness. Formalizing this idea requires to make ex-
plicit the commitment scheme associated to the NIZK, as well as the commitment key that is part of
the common reference string. In [CFQ19] Campanelli, Fiore and Querol discuss how many of the ex-
isting NIZK constructions satisfy this property. In particular, this holds for popular zkSNARKs like
[Gro16] They also show how cc-NIZKs can be lifted to become full fledged, composable, CP-NIZKs.

Definition A.1. cc-NIZK
A cc-NIZK is a tuple ccΠ of algorithms working as follows:

– KeyGen(R) → (ck, ek, vk): the key generation takes as input the security parameter λ and a
relation R ∈ Rλ, and outputs a common reference string that includes a commitment key, an
evaluaton key and verification key.

– Prove(ek, x, w)→ (c, π; o): the proving algorithm takes as input an evaluation key, a statement
x and a witness w := (u, ω) such that the relation R(x, u, ω) holds, and it outputs a proof π, a
commitment c and opening o such that VerCommit(ck,c,u,o) = 1.

– VerProof(vk, x, c, π) → b: the verification algorithm takes a verification key, a statement x, a
commitment c, and either accepts (b = 1) or rejects (b = 0) the proof π.
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– VerCommit(ck, c, u, o)→ b: the commitment verification algorithm takes as input a commitment
key, a commitment c, a message u and an opening o and accepts (b = 1) or rejects (b = 0).

Completeness. For any λ ∈ N, R ∈ Rλ and (x,w) such that R(x,w), it holds

Pr

[
(ck, ek, vk)← KeyGen(R);

(c, π; o)← Prove(ek, x, w)
: VerProof(vk, x, c, π)

]
= 1

Knowledge Soundness. Let RG be a relation generator such that RGλ ⊆ Rλ. ccΠ satisfies

knowledge soundness for RG and auxiliary input distribution Z, or ccKSND(RG,Z), if there exists
a (non-uniform) efficient extractor E that for every (non-uniform) efficient adversary A is such
that Pr[GameccKSNDRG,Z,A,E = 1] = negl. We say that ccΠ is knowledge sound if there exist benign RG
and Z such that ccΠ is ccKSND(RG,Z).

GameccKSNDRG,Z,A,E → b ∈ {0, 1}
(R, auxR)←RG(1λ)

crs := (ck, ek, vk)← KeyGen(R)

auxZ ← Z(R, auxR, crs)(
x, c, π

)
← A(R, crs, auxR, auxZ)(

u, o, ω
)
← EA(R, crs, auxR, auxZ)

b← VerProof(vk, x, c, π) = 1 ∧ (VerCommit(ck, c, u, o) = 0 ∨R(x, u, ω) = 0)

Composable Zero-Knowledge. A scheme ccΠ has composable zero-knowledge for a relation
generator RG if for every adversary A there exists a simulator S = (Skg,Sprv) such that both
following conditions hold for all adversaries A:

Keys Indistinguishability.

Pr

[
(R, auxR)← RG(1λ);

crs← KeyGen(R)
: A(crs, auxR) = 1

]

≈ Pr

[
(R, auxR)← RG(1λ);

(crs, tdk)← Skg(R)
: A(crs, auxR) = 1

]

Proof Indistinguishability. For all (x,w),

Pr

(R, auxR)← RG(1λ);

(crs, tdk)← Skg(R);

(c, π; o)← Prove(ek, x, w)

:
A(crs, auxR, c, π) = 1 ∧

R(x,w) = 1


≈ Pr

(R, auxR)← RG(1λ);

(crs, tdk)← Skg(R);

(c, π)← Sprv(crs, tdk, x)

:
A(crs, auxR, c, π) = 1 ∧

R(x,w) = 1
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Binding. For every polynomial-time adversary A the following probability is negl(λ):

Pr

(R, auxR)← RG(1λ)

crs := (ck, ek, vk)← KeyGen(R)

(c, u, o, u′, o′)← A(R, crs, auxR)

:

VerCommit(ck, c, u′, o′)

∧VerCommit(ck, c, u, o)

∧u 6= u′


Remark A.1. While our definitions consider the case where the proof contains a commitment to a
portion u of the witness w = (u, ω), notice that this partition of the witness is arbitrary and thus
this notion also captures those constructions where the commitment is to the entire witness if one
thinks of a void ω.
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